砂介质渗透性影响因素的试验研究

高宗军, 丁子祺, 刘久潭, 刘文悦. 砂介质渗透性影响因素的试验研究[J]. 水文地质工程地质, 2024, 51(6): 8-17. doi: 10.16030/j.cnki.issn.1000-3665.202404025
引用本文: 高宗军, 丁子祺, 刘久潭, 刘文悦. 砂介质渗透性影响因素的试验研究[J]. 水文地质工程地质, 2024, 51(6): 8-17. doi: 10.16030/j.cnki.issn.1000-3665.202404025
GAO Zongjun, DING Ziqi, LIU Jiutan, LIU Wenyue. Experimental study on the influencing factors of permeability of sand media[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 8-17. doi: 10.16030/j.cnki.issn.1000-3665.202404025
Citation: GAO Zongjun, DING Ziqi, LIU Jiutan, LIU Wenyue. Experimental study on the influencing factors of permeability of sand media[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 8-17. doi: 10.16030/j.cnki.issn.1000-3665.202404025

砂介质渗透性影响因素的试验研究

  • 基金项目: 国家自然科学基金项目(41641022)
详细信息
    作者简介: 高宗军(1964—),男,博士,教授,博士生导师,主要从事水工环地质方面的研究。E-mail:zongjungao1964@163.com
  • 中图分类号: P641.2

Experimental study on the influencing factors of permeability of sand media

  • 达西试验是砂介质渗透性能的主要确定方法。但是受到砂介质粒度与压实度、水的溶解性总固体(TDS)与水头差、试验温度等多种因素的影响,获得的达西试验结果存在巨大差异,给实际应用造成很大的不确定性。为探究不同条件下达西试验产生的不同结果,在常温常压环境下,选择不同砂介质,开展不同温度、TDS、供排水水头差等情况下的试验。结果表明:(1)水温增高,渗透系数增大,渗透性越好的介质,受温度的影响越显著;(2)TDS增高,渗透系数减小,渗透性好的介质,渗透性随TDS呈对数函数或指数函数变化,即水在低TDS变化时引起的介质的渗透性变化剧烈,反之亦然,而渗透性差的介质,渗透性随着TDS增高近似呈线性减小;(3)供排水水头差增加到一定值时,渗透系数不再恒定,临界雷诺数细砂为0.4,中砂为3.3;(4)压实度越高,渗透系数越小;(5)孔隙度相同时,粒径越大则渗透系数越大。本试验结果将为今后渗透系数的获取、应用提供借鉴,为地下水评价、地质灾害防治等水文地质参数选取提供依据。

  • 加载中
  • 图 1  达西试验装置

    Figure 1. 

    图 2  不同温度下水力坡度与渗透流速的线性关系

    Figure 2. 

    图 3  不同砂介质温度与渗透系数的线性关系

    Figure 3. 

    图 4  不同TDS水的水力坡度与渗透流速的线性关系

    Figure 4. 

    图 5  不同砂介质TDS与渗透系数的关系曲线

    Figure 5. 

    图 6  不同供排水水头差条件下水力坡度与渗透流速的关系

    Figure 6. 

    图 7  不同砂介质压实度与渗透系数的线性关系

    Figure 7. 

    图 8  水流在压实后的砂介质中的运动状态模型

    Figure 8. 

    图 9  水在不同粒径砂介质中的运动状态模型

    Figure 9. 

    图 10  不同砂介质的渗透系数与孔隙度的线性关系

    Figure 10. 

    图 11  细、中砂渗透系数随供排水水头的变化

    Figure 11. 

    表 1  试验用砂介质参数

    Table 1.  Sand media parameters used for the test

    砂介质类型粒径/mm一般捣实程度的质量/g
    细砂0.10≤d≤0.2513414
    中砂0.25<d≤0.5013543
    粗砂0.50<d≤2.0013673
    下载: 导出CSV

    表 2  各粒径级砂介质的相关参数

    Table 2.  Relevant parameters of graded sand media of each particle size

    砂介质
    类型
    粒径/mm 质量/g 干密度
    /(g·cm−3
    相对密度
    /(g·cm−3
    孔隙度/%
    细砂0.10≤d≤0.25126341.5902.66540.35
    131921.66037.72
    134141.68836.67
    144751.82131.66
    中砂0.25<d≤0.50119141.4992.65743.58
    121711.53142.37
    127711.60739.53
    131511.65537.73
    135431.70435.87
    粗砂0.50<d≤2.00120051.5102.63042.57
    121521.52941.87
    135691.70735.09
    136731.72034.59
    146731.84629.81
    下载: 导出CSV
  • [1]

    伍艳,王玮屏,任海平,等. 水-土作用对土体渗透系数的影响研究[J]. 水文地质工程地质,2011,38(6):39 − 43. [WU Yan,WANG Weiping,REN Haiping,et al. Experimental studies of coefficient of permeability of soil affected by water-soil interactions[J]. Hydrogeology & Engineering Geology,2011,38(6):39 − 43. (in Chinese with English abstract)]

    WU Yan, WANG Weiping, REN Haiping, et al. Experimental studies of coefficient of permeability of soil affected by water-soil interactions[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 39 − 43. (in Chinese with English abstract)

    [2]

    杨博,张虎元,赵天宇,等. 改性黄土渗透性与孔隙结构的依存关系[J]. 水文地质工程地质,2011,38(6):96 − 101. [YANG Bo,ZHANG Huyuan,ZHAO Tianyu,et al. Responsibility of permeability of modified loess soil on microstructure[J]. Hydrogeology & Engineering Geology,2011,38(6):96 − 101. (in Chinese with English abstract)]

    YANG Bo, ZHANG Huyuan, ZHAO Tianyu, et al. Responsibility of permeability of modified loess soil on microstructure[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 96 − 101. (in Chinese with English abstract)

    [3]

    杨靖,汪吉林. 砂性土渗流的分形特征研究[J]. 煤田地质与勘探,2010,38(2):42 − 45. [YANG Jing,WANG Jilin. Research on fractal characteristics of permeability of sandy soil[J]. Coal Geology & Exploration,2010,38(2):42 − 45. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-1986.2010.02.011

    YANG Jing, WANG Jilin. Research on fractal characteristics of permeability of sandy soil[J]. Coal Geology & Exploration, 2010, 38(2): 42 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2010.02.011

    [4]

    赵枝艳,张常亮,沈伟,等. 黄土-古土壤饱和渗透性与孔隙分布特征关系研究[J]. 水文地质工程地质,2024,51(1):47 − 56. [ZHAO Zhiyan,ZHANG Changliang,SHEN Wei,et al. Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol[J]. Hydrogeology & Engineering Geology,2024,51(1):47 − 56. (in Chinese with English abstract)]

    ZHAO Zhiyan, ZHANG Changliang, SHEN Wei, et al. Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 47 − 56. (in Chinese with English abstract)

    [5]

    贾洋,崔素丽. Cu2+对重塑黄土饱和渗透系数的影响研究[J]. 水文地质工程地质,2023,50(3):93 − 103. [JIA Yang,CUI Suli. Effect of Cu2+ on the saturated coefficient of permeability of remolded loess[J]. Hydrogeology & Engineering Geology,2023,50(3):93 − 103. (in Chinese with English abstract)]

    JIA Yang, CUI Suli. Effect of Cu2+ on the saturated coefficient of permeability of remolded loess[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 93 − 103. (in Chinese with English abstract)

    [6]

    王继玲,周维博,孙梨梨,等. 石川河富平地下水库渗透系数空间变异性研究[J]. 水文地质工程地质,2023,50(3):34 − 43. [WANG Jiling,ZHOU Weibo,SUN Lili,et al. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology,2023,50(3):34 − 43. (in Chinese with English abstract)]

    WANG Jiling, ZHOU Weibo, SUN Lili, et al. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 34 − 43. (in Chinese with English abstract)

    [7]

    唐占君. 无黏性粗粒土在水利工程中渗透系数试验方法研究[J]. 水利科技与经济,2021,27(1):39 − 43. [TANG Zhanjun. Study on test method of permeability coefficient of cohesionless coarse-grained soil in hydraulic engineering[J]. Water Conservancy Science and Technology and Economy,2021,27(1):39 − 43. (in Chinese)] doi: 10.3969/j.issn.1006-7175.2021.01.007

    TANG Zhanjun. Study on test method of permeability coefficient of cohesionless coarse-grained soil in hydraulic engineering[J]. Water Conservancy Science and Technology and Economy, 2021, 27(1): 39 − 43. (in Chinese) doi: 10.3969/j.issn.1006-7175.2021.01.007

    [8]

    陈梦迪,姜振蛟,霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析[J]. 水文地质工程地质,2023,50(2):63 − 72. [CHEN Mengdi,JIANG Zhenjiao,HUO Chenchen. Stochastic modeling of in situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology,2023,50(2):63 − 72. (in Chinese with English abstract)]

    CHEN Mengdi, JIANG Zhenjiao, HUO Chenchen. Stochastic modeling of in situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 63 − 72. (in Chinese with English abstract)

    [9]

    王艳华,潘争伟,张劼,等. 多孔连续介质渗透定律及其扩展[J]. 赤峰学院学报(自然科学版),2015,31(7):32 − 34. [WANG Yanhua,PAN Zhengwei,ZHANG Jie,et al. Permeability law of porous continuous medium and its extension[J]. Journal of Chifeng University (Natural Science Edition),2015,31(7):32 − 34. (in Chinese)] doi: 10.3969/j.issn.1673-260X.2015.07.012

    WANG Yanhua, PAN Zhengwei, ZHANG Jie, et al. Permeability law of porous continuous medium and its extension[J]. Journal of Chifeng University (Natural Science Edition), 2015, 31(7): 32 − 34. (in Chinese) doi: 10.3969/j.issn.1673-260X.2015.07.012

    [10]

    桂春雷,石建省,刘继朝,等. 含水层渗透系数预测及不确定性分析耦合模型[J]. 水利学报,2014,45(5):521 − 528. [GUI Chunlei,SHI Jiansheng,LIU Jichao,et al. A coupling model for aquifer hydraulic conductivity prediction and its uncertainty analysis[J]. Journal of Hydraulic Engineering,2014,45(5):521 − 528. (in Chinese with English abstract)]

    GUI Chunlei, SHI Jiansheng, LIU Jichao, et al. A coupling model for aquifer hydraulic conductivity prediction and its uncertainty analysis[J]. Journal of Hydraulic Engineering, 2014, 45(5): 521 − 528. (in Chinese with English abstract)

    [11]

    丁述基. 达西及达西定律[J]. 水文地质工程地质,1986,13(3):33 − 35. [DING Shuji. Darcy and Darcy’s law[J]. Hydrogeology & Engineering Geology,1986,13(3):33 − 35. (in Chinese)]

    DING Shuji. Darcy and Darcy’s law[J]. Hydrogeology & Engineering Geology, 1986, 13(3): 33 − 35. (in Chinese)

    [12]

    张东,刘晓丽,王恩志. 非均匀多孔介质等效渗透率的普适表达式[J]. 水文地质工程地质,2020,47(4):35 − 42. [ZHANG Dong,LIU Xiaoli,WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2020,47(4):35 − 42. (in Chinese with English abstract)]

    ZHANG Dong, LIU Xiaoli, WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35 − 42. (in Chinese with English abstract)

    [13]

    FRANCIS J B. Memorandum and tables,exhibiting the results of some of Darcy’s experiment on the flow of water through pipes[J]. Transactions of the American Society of Civil Engineers,1874,2(1):45 − 52. doi: 10.1061/TACEAT.0000071

    [14]

    LAGE J L,ANTOHE B V. Darcy’s experiments and the deviation to nonlinear flow regime[J]. Journal of Fluids Engineering,2000,122(3):619 − 625. doi: 10.1115/1.1287722

    [15]

    李刚,马佰衡,周仰效,等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质,2021,48(4):48 − 54. [LI Gang,MA Baiheng,ZHOU Yangxiao,et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology,2021,48(4):48 − 54. (in Chinese with English abstract)]

    LI Gang, MA Baiheng, ZHOU Yangxiao, et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 48 − 54. (in Chinese with English abstract)

    [16]

    陈社明,刘宏伟,卢文喜,等. 悬挂式防渗墙作用下非均质地层的渗流量研究——以松花江干流群力堤为例[J]. 水文地质工程地质,2016,43(4):14 − 19. [CHEN Sheming,LIU Hongwei,LU Wenxi,et al. Calculation of seepage under the effect of a suspended anti-seepage wall in the heterogeneous formation,exemplified by the Qunli Dam in the Songhua River[J]. Hydrogeology & Engineering Geology,2016,43(4):14 − 19. (in Chinese with English abstract)]

    CHEN Sheming, LIU Hongwei, LU Wenxi, et al. Calculation of seepage under the effect of a suspended anti-seepage wall in the heterogeneous formation, exemplified by the Qunli Dam in the Songhua River[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 14 − 19. (in Chinese with English abstract)

    [17]

    姜伟男,王福刚,董维红. 典型砂介质含水层渗透系数盐度效应研究[J]. 人民黄河,2018,40(8):145 − 148. [JIANG Weinan,WANG Fugang,DONG Weihong. Salinity effect of permeability coefficient of sand media aquifer[J]. Yellow River,2018,40(8):145 − 148. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2018.08.034

    JIANG Weinan, WANG Fugang, DONG Weihong. Salinity effect of permeability coefficient of sand media aquifer[J]. Yellow River, 2018, 40(8): 145 − 148. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2018.08.034

    [18]

    高宗军,张福存,安永会,等. 地下水分层勘查技术在地下水流系统研究中的应用[J]. 地质科技通报,2022,41(1):71 − 78. [GAO Zongjun,ZHANG Fucun,AN Yonghui,et al. Application of groundwater stratified exploration technology in groundwater flow system research[J]. Bulletin of Geological Science and Technology,2022,41(1):71 − 78. (in Chinese with English abstract)]

    GAO Zongjun, ZHANG Fucun, AN Yonghui, et al. Application of groundwater stratified exploration technology in groundwater flow system research[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 71 − 78. (in Chinese with English abstract)

    [19]

    徐德敏,黄润秋,虞修竟. 高渗压小水力梯度岩石渗透性测试[J]. 岩土力学,2010,31(4):1103 − 1107. [XU Demin,HUANG Runqiu,YU Xiujing. Rock permeability test under high pore water pressure and low hydraulic gradient[J]. Rock and Soil Mechanics,2010,31(4):1103 − 1107. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2010.04.016

    XU Demin, HUANG Runqiu, YU Xiujing. Rock permeability test under high pore water pressure and low hydraulic gradient[J]. Rock and Soil Mechanics, 2010, 31(4): 1103 − 1107. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.04.016

    [20]

    刘凯,文章,梁杏,等. 一维低渗透介质非达西渗流实验[J]. 水动力学研究与进展A辑,2013,28(1):81 − 87. [LIU Kai,WEN Zhang,LIANG Xing,et al. One-dimensional column test for non-Darcy flow in low permeability media[J]. Chinese Journal of Hydrodynamics,2013,28(1):81 − 87. (in Chinese with English abstract)]

    LIU Kai, WEN Zhang, LIANG Xing, et al. One-dimensional column test for non-Darcy flow in low permeability media[J]. Chinese Journal of Hydrodynamics, 2013, 28(1): 81 − 87. (in Chinese with English abstract)

    [21]

    王福刚,张佳慧,于吉洋,等. 不同水力梯度对渗透系数影响研究[J]. 实验技术与管理,2015,32(6):25 − 28. [WANG Fugang,ZHANG Jiahui,YU Jiyang,et al. Research on influence of different hydraulic gradient on hydraulic conductivity[J]. Experimental Technology and Management,2015,32(6):25 − 28. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-4956.2015.06.008

    WANG Fugang, ZHANG Jiahui, YU Jiyang, et al. Research on influence of different hydraulic gradient on hydraulic conductivity[J]. Experimental Technology and Management, 2015, 32(6): 25 − 28. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4956.2015.06.008

    [22]

    EATON T T. On the importance of geological heterogeneity for flow simulation[J]. Sedimentary Geology,2006,184(3/4):187 − 201.

    [23]

    陈四利,李锋,侯芮,等. 温度变化对水泥土渗透特性影响试验[J]. 沈阳工业大学学报,2020,42(4):453 − 458. [CHEN Sili,LI Feng,HOU Rui,et al. Tests on influence of temperature variation on permeability of cemented soil[J]. Journal of Shenyang University of Technology,2020,42(4):453 − 458. (in Chinese with English abstract)] doi: 10.7688/j.issn.1000-1646.2020.04.18

    CHEN Sili, LI Feng, HOU Rui, et al. Tests on influence of temperature variation on permeability of cemented soil[J]. Journal of Shenyang University of Technology, 2020, 42(4): 453 − 458. (in Chinese with English abstract) doi: 10.7688/j.issn.1000-1646.2020.04.18

    [24]

    李龙飞. 基于渗透性的岩土粒径临界值研究及其水文地质意义[D]. 徐州:中国矿业大学,2020. [LI Longfei. Study on critical value of rock and soil particle size based on permeability and its hydrogeological significance[D]. Xuzhou:China University of Mining and Technology,2020. (in Chinese with English abstract)]

    LI Longfei. Study on critical value of rock and soil particle size based on permeability and its hydrogeological significance[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese with English abstract)

    [25]

    韩立炜,信行. 胶凝砂砾石渗透性能影响因素分析[J]. 水电能源科学,2022,40(11):150 − 153. [HAN Liwei,XIN Hang. Analysis of factors affecting permeability of cemented sand and gravel[J]. Water Resources and Power,2022,40(11):150 − 153. (in Chinese with English abstract)]

    HAN Liwei, XIN Hang. Analysis of factors affecting permeability of cemented sand and gravel[J]. Water Resources and Power, 2022, 40(11): 150 − 153. (in Chinese with English abstract)

    [26]

    RADFORD B J,BRIDGE B J,DAVIS R J,et al. Changes in the properties of a vertisol and responses of wheat after compaction with harvester traffic[J]. Soil and Tillage Research,2000,54(3/4):155 − 170.

    [27]

    李华,李同录,张亚国,等. 不同干密度压实黄土的非饱和渗透性曲线特征及其与孔隙分布的关系[J]. 水利学报,2020,51(8):979 − 986. [LI Hua,LI Tonglu,ZHANG Yaguo,et al. Relationship between unsaturated permeability curve and pore-size distribution of compacted loess with different dry density[J]. Journal of Hydraulic Engineering,2020,51(8):979 − 986. (in Chinese with English abstract)]

    LI Hua, LI Tonglu, ZHANG Yaguo, et al. Relationship between unsaturated permeability curve and pore-size distribution of compacted loess with different dry density[J]. Journal of Hydraulic Engineering, 2020, 51(8): 979 − 986. (in Chinese with English abstract)

    [28]

    张镇飞,倪万魁,王熙俊,等. 压实黄土水分入渗规律及渗透性试验研究[J]. 水文地质工程地质,2019,46(6):97 − 104. [ZHANG Zhenfei,NI Wankui,WANG Xijun,et al. An experimental study of water infiltration and hydraulic conductivity of the compacted loess[J]. Hydrogeology & Engineering Geology,2019,46(6):97 − 104. (in Chinese with English abstract)]

    ZHANG Zhenfei, NI Wankui, WANG Xijun, et al. An experimental study of water infiltration and hydraulic conductivity of the compacted loess[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 97 − 104. (in Chinese with English abstract)

    [29]

    丁瑜,饶云康,倪强,等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质,2019,46(3):108 − 116. [DING Yu,RAO Yunkang,NI Qiang,et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019,46(3):108 − 116. (in Chinese with English abstract)]

    DING Yu, RAO Yunkang, NI Qiang, et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 108 − 116. (in Chinese with English abstract)

    [30]

    孙蓉琳,梁杏,靳孟贵. 裂隙岩体渗透系数确定方法综述[J]. 水文地质工程地质,2006,33(6):120 − 123. [SUN Ronglin,LIANG Xing,JIN Menggui. Review on determination of hydraulic conductivity of fractured rocks[J]. Hydrogeology & Engineering Geology,2006,33(6):120 − 123. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2006.06.030

    SUN Ronglin, LIANG Xing, JIN Menggui. Review on determination of hydraulic conductivity of fractured rocks[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 120 − 123. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.06.030

  • 加载中

(11)

(2)

计量
  • 文章访问数:  68
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2024-01-08
修回日期:  2024-03-19
刊出日期:  2024-11-15

目录