Genesis of high-sulfate geothermal water in the Namcha Barwa syntaxis, eastern Xizang
-
摘要:
藏东南迦巴瓦构造结广泛发育高硫酸盐地热水,开发利用潜力巨大,但硫酸盐来源和形成机理缺乏研究。以南迦巴瓦构造结的温泉水和钻孔水为研究对象,通过水化学组分特征初步揭示离子来源,借助锶和硫酸盐硫、氧同位素综合分析地热水硫酸盐的来源,并利用氘氧同位素探明地热水补给来源,最终查明深部热储的水岩平衡状态和热储温度,归纳总结南迦巴瓦构造结高硫酸盐地热水形成机理。结果表明:(1)地热水属于弱酸及弱碱-碱性水,溶解性总固体含量为130~
3265 mg/L,水化学类型包括HCO3•SO4—Ca•Na、SO4—Ca及SO4•HCO3—Ca•Na型;(2)水化学和锶同位素结果表明片麻岩硅酸盐矿物和蒸发岩硫酸盐矿物溶解是影响水化学组分的关键,${}^{34}{\mathrm{S}}_{{\mathrm{SO}}_4} $-${}^{18}{\mathrm{O}}_{{\mathrm{SO}}_4} $同位素表明${\mathrm{SO}}_4^{2-} $存在大气降水、土壤硫酸盐、黄铁矿和石膏多源供给;(3)氢氧同位素揭示温泉热水补给来源为大气降水,补给高程为2646 ~3045 m;(4)二氧化硅地热温标和硅焓模型计算得到深部热储温度为232~275 °C,浅部热储温度约为180 °C,冷水混入比例为74%~82%。研究揭示该区大气降水沿断裂破碎带或基岩裂隙等导水通道向深部运移,沿途溶滤土壤硫酸盐、变质岩及局部膏盐层,在深部被加热后升流,最终于近地表混入下渗冷水后出露成泉。研究初步建立了高硫酸盐地热水的成因模式,可为南迦巴瓦构造结地热资源开发利用提供科学依据。Abstract:In the Namcha Barwa syntaxis of eastern, high-sulfate geothermal water is extensively developed, presenting significant potential for exploitation and utilization. However, the sources and formation mechanisms of these sulfates remain poorly understood. This study focused on the hot spring and borehole water in the Namcha Barwa syntaxis, aiming to identify the sources of ions in geothermal water. The study first examines the hydrochemical components, followed by comprehensive analyses of strontium, sulfate sulfur, and oxygen isotopes to determine the sources of sulfate in geothermal water In addition, this study investigated the water-rock equilibrium and temperature of deep thermal reservoirs and summarized the genesis of high-sulfate geothermal waters in the Namcha Barwa syntaxis. The geothermal water is characterized as weakly acidic to weakly alkaline-alkaline water, with total dissolved solids ranging from 130 mg/L to
3265 mg/L. The hydrochemical types include HCO3•SO4—Ca•Na, SO4—Ca, and SO4•HCO3—Ca•Na. Water chemistry and strontium isotope results indicate that the dissolution of silicate minerals in gneiss and sulfate in evaporites are key factors influencing the water chemistry components. The ${}^{34}{\mathrm{S}}_{{\mathrm{SO}}_4} $-${}^{18}{\mathrm{O}}_{{\mathrm{SO}}_4} $isotopes suggest multiple ${\mathrm{SO}}_4^{2-} $ sources, including atmospheric precipitation, soil sulfate, pyrite, and gypsum. Hydrogen and oxygen isotopes reveal that the hot spring thermal water is recharged by atmospheric precipitation, with a recharge elevation of2646 m to3045 m. Calculations using the silica geothermometer and the silica enthalpy model estimate the deep reservoir temperatures to be approximately 232 °C to 275 °C, with shallow reservoir temperatures around 180 °C and a cold water mixing ratio of 74% to 82%. The study reveals that atmospheric precipitation in this area migrates into deep reservoirs along water-conducting pathways such as fault fracture zones or bedrock fissures. It leaches soil sulfate, metamorphic rocks, and localized salt layers along the way. Once heated at deep reservoirs, it flows upward and ultimately emerges as springs after mixing with infiltrating cold water near the surface. This study establishes a genesis model for high-sulfate geothermal water, providing a scientific basis for developing and utilizing geothermal resources in the Namcha Barwa syntaxis. -
-
表 1 研究区地热水化学组分
Table 1. Hydrochemical components of geothermal water in the study area
编号 样品类型 温度/°C pH 质量浓度(ρ)/(mg·L−1) TDS Ca2+ Mg2+ Na+ K+ Cl− S1 温泉水 39.3 7.89 1393.64 137.79 23.07 131.23 19.65 80.43 S2 钻孔水 68.8 8.07 818.13 91.03 2.24 114.45 9.19 24.07 S3 温泉水 60.8 8.17 1299.78 99.86 9.56 170.62 20.03 50.05 S4 温泉水 84.1 10.41 1884.89 0.64 0.01 504.03 57.63 397.59 S5 地表水 10.1 8.45 130.06 24.33 1.80 1.40 2.72 3.01 编号 样品类型 质量浓度(ρ)/(mg·L−1) 质量浓度(ρ)/(μg·L−1) ${\mathrm{SO}}_4^{2-} $ ${\mathrm{HCO}}_3^- $ ${\mathrm{CO}}_3^{2-} $ SiO2 F− Li B Sr S1 温泉水 152.63 649.01 2.50 119.47 0.85 280.13 5907.00 883.66 S2 钻孔水 336.84 190.11 2.50 106.22 1.19 42.65 863.00 1521.51 S3 温泉水 338.28 405.03 2.50 116.56 1.49 269.34 5631.00 836.90 S4 温泉水 260.51 111.01 204.80 209.33 5.81 1905.78 12167.00 224.13 S5 地表水 23.57 63.37 2.50 5.84 0.10 2.63 207.00 170.61 编号 样品类型 δ ${}^{34}{\mathrm{S}}_{{\mathrm{SO}}_4} $ /‰δ ${}^{18}{\mathrm{O}}_{{\mathrm{SO}}_4} $ /‰87Sr/86Sr δD/‰ δ18O/‰ 采样高程/m 补给高程/m 水化学类型 S1 温泉水 15.16 3.11 0.71496 −86.03 −12.29 2275 2605 HCO3—Na•Ca S2 钻孔水 9.15 7.15 0.70632 −87.10 −12.88 2452 2646 SO4•HCO3—Ca•Na S3 温泉水 8.66 0.87 0.72327 −75.04 −10.85 2068 2184 SO4•HCO3—Ca•Na S4 温泉水 19.25 4.03 0.71362 −92.77 −10.06 2032 2863 Cl—Na S5 地表水 ─ ─ 0.71054 −77.62 −12.41 2283 ─ HCO3•SO4—Ca 注:“—”代表数据缺失。 表 2 热储温度和冷水混合比例估算结果
Table 2. Calculation results of geothermal reservoir and cold water mixing ratio
编号 热储温度/°C 冷水混合比例/% 石英 玉髓 多矿物平衡 硅-焓方程 S1 147 122 155~175 — — S2 141 114 — 232 74 S3 146 120 — 275 82 S4 183 162 154~169 — — 注:“—”表示没有计算。 表 3 地热水温度、焓和SiO2含量之间对应关系
Table 3. Relationship between temperature, enthalpy, and SiO2 content in geothermal water
温度/°C 焓值/( 4.1868 J·g−1)SiO2质量浓度/ (mg·L−1) 50 50.0 13.5 75 75.0 26.6 100 100.1 48.0 125 125.4 80.0 150 151.0 125.0 175 177.0 185.0 200 203.6 265.0 225 230.9 365.0 250 259.2 486.0 275 289.0 614.0 300 321.0 692.0 -
[1] QI Jihong,XU Mo,AN Chengjiao,et al. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau,China[J]. Physics of the Earth and Planetary Interiors,2017,263:12 − 22. doi: 10.1016/j.pepi.2017.01.001
[2] GUO Qi,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry,2017,81:63 − 75. doi: 10.1016/j.apgeochem.2017.03.007
[3] ZHANG Jian,LI Wuyang,TANG Xianchun,et al. Geothermal data analysis at the high-temperature hydrothermal area in western Sichuan[J]. Science China Earth Sciences,2017,60(8):1507 − 1521. doi: 10.1007/s11430-016-9053-2
[4] LI Jiexiang,YANG Guang,SAGOE G,et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field,western Sichuan Province[J]. Geothermics,2018,75:154 − 163. doi: 10.1016/j.geothermics.2018.04.008
[5] YI Lei,QI Jihong,LI Xiao,et al. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau[J]. Journal of Volcanology and Geothermal Research,2021,414:107244. doi: 10.1016/j.jvolgeores.2021.107244
[6] 邹俊,武斌,马昭雄,等. 西藏谢通门县卡嘎地热成因与资源潜力分析[J]. 水文地质工程地质,2023,50(3):207 − 216. [ZOU Jun,WU Bin,MA Zhaoxiong,et al. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology,2023,50(3):207 − 216. (in Chinese with English abstract)]
ZOU Jun, WU Bin, MA Zhaoxiong, et al. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 207 − 216. (in Chinese with English abstract)
[7] 何丽娟,汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语,2021,23(3):3 − 9. [HE Lijuan,WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as Terrestrial Heat Flow[J]. China Terminology,2021,23(3):3 − 9. (in Chinese with English abstract)] doi: 10.12339/j.issn.1673-8578.2021.03.001
HE Lijuan, WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as Terrestrial Heat Flow[J]. China Terminology, 2021, 23(3): 3 − 9. (in Chinese with English abstract) doi: 10.12339/j.issn.1673-8578.2021.03.001
[8] GUO Qinghai,WANG Yanxin,LIU Wei. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet,China[J]. Journal of Volcanology and Geothermal Research,2009,180(1):9 − 20. doi: 10.1016/j.jvolgeores.2008.11.034
[9] TIAN Jiao,PANG Zhonghe,WANG Yingchun,et al. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis[J]. Applied Geochemistry,2019,110:104422. doi: 10.1016/j.apgeochem.2019.104422
[10] WANG Chenguang,ZHENG Mianping,ZHANG Xuefei,et al. O,H,and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system,Himalayas,China[J]. Geoscience Frontiers,2020,11(4):1175 − 1187. doi: 10.1016/j.gsf.2019.09.013
[11] 郑来林,金振民,潘桂棠,等. 喜马拉雅造山带东、西构造结的地质特征与对比[J]. 地球科学,2004,29(3):269 − 277. [ZHENG Lailin,JIN Zhenmin,PAN Guitang,et al. A geological comparison between the eastern and western Himalayan syntaxes[J]. Earth Science,2004,29(3):269 − 277. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-2383.2004.03.003
ZHENG Lailin, JIN Zhenmin, PAN Guitang, et al. A geological comparison between the eastern and western Himalayan syntaxes[J]. Earth Science, 2004, 29(3): 269 − 277. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-2383.2004.03.003
[12] 丰成君,李滨,李惠,等. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报,2022,28(6):919 − 937. [FENG Chengjun,LI Bin,LI Hui,et al. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics,2022,28(6):919 − 937. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.20222820
FENG Chengjun, LI Bin, LI Hui, et al. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 2022, 28(6): 919 − 937. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.20222820
[13] 董汉文,许志琴,曹汇,等. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学,2018,43(4):933 − 951. [DONG Hanwen,XU Zhiqin,CAO Hui,et al. Comparison of eastern and western boundary faults of Eastern Himalayan syntaxis,and its tectonic evolution[J]. Earth Science,2018,43(4):933 − 951. (in Chinese with English abstract)]
DONG Hanwen, XU Zhiqin, CAO Hui, et al. Comparison of eastern and western boundary faults of Eastern Himalayan syntaxis, and its tectonic evolution[J]. Earth Science, 2018, 43(4): 933 − 951. (in Chinese with English abstract)
[14] 唐方头,尤惠川,梁小华,等. 西藏米林6.9级地震发震断层判定及其构造属性讨论[J]. 地球学报,2019,40(1):213 − 218. [TANG Fangtou,YOU Huichuan,LIANG Xiaohua,et al. A discussion on seismogenic fault of the milin M s6.9 earthquake,Tibet,and its tectonic attributes[J]. Acta Geoscientica Sinica,2019,40(1):213 − 218. (in Chinese with English abstract)] doi: 10.3975/cagsb.2018.111302
TANG Fangtou, YOU Huichuan, LIANG Xiaohua, et al. A discussion on seismogenic fault of the milin Ms6.9 earthquake, Tibet, and its tectonic attributes[J]. Acta Geoscientica Sinica, 2019, 40(1): 213 − 218. (in Chinese with English abstract) doi: 10.3975/cagsb.2018.111302
[15] 章旭,郝红兵,刘康林,等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质,2019,46(4):1 − 9. [ZHANG Xu,HAO Hongbing,LIU Kanglin,et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology,2019,46(4):1 − 9. (in Chinese with English abstract)]
ZHANG Xu, HAO Hongbing, LIU Kanglin, et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 1 − 9. (in Chinese with English abstract)
[16] 王誉桦,曾令森,高利娥,等. 喜马拉雅造山带东构造结拉布拉多期和格林威尔期造山作用的记录[J]. 岩石学报,2014,30(8):2241 − 2252. [WANG Yuhua,ZENG Lingsen,GAO Lie,et al. Labradonian and Greenvillian orogenic events in the Namche Barwa massif of the Himalayan orogenic belt[J]. Acta Petrologica Sinica,2014,30(8):2241 − 2252. (in Chinese with English abstract)]
WANG Yuhua, ZENG Lingsen, GAO Lie, et al. Labradonian and Greenvillian orogenic events in the Namche Barwa massif of the Himalayan orogenic belt[J]. Acta Petrologica Sinica, 2014, 30(8): 2241 − 2252. (in Chinese with English abstract)
[17] GAO Lie,ZENG Lingsen,HU Guyue,et al. Early paleozoic magmatism along the northern margin of East Gondwana[J]. Lithos,2019,334/335:25 − 41. doi: 10.1016/j.lithos.2019.03.007
[18] SU Wen,ZHANG Ming,LIU Xiaohan,et al. Exact timing of granulite metamorphism in the Namche-Barwa,eastern Himalayan syntaxis:New constrains from SIMS U–Pb zircon age[J]. International Journal of Earth Sciences,2012,101(1):239 − 252. doi: 10.1007/s00531-011-0656-0
[19] HUANG Shuye,YAO Huajian,LU Zhanwu,et al. High‐resolution 3‐D shear wave velocity model of the Tibetan Plateau:Implications for crustal deformation and porphyry Cu deposit formation[J]. Journal of Geophysical Research(Solid Earth),2020,125(7):e2019JB019215.
[20] 范鹏啸,于常青,王瑞雪,等. 西藏波密地区深部密度结构与地震活动的关系[J]. 地质学报,2024,98(10):3047 − 3061. [FAN Pengxiao,YU Changqing,WANG Ruixue,et al. Relationship between deep density structures and seismicity in Bomi area of Tibet[J]. Acta Geologica Sinica,2024,98(10):3047 − 3061. (in Chinese with English abstract)]
FAN Pengxiao, YU Changqing, WANG Ruixue, et al. Relationship between deep density structures and seismicity in Bomi area of Tibet[J]. Acta Geologica Sinica, 2024, 98(10): 3047 − 3061. (in Chinese with English abstract)
[21] LI Xiao,QI Jihong,YI Lei,et al. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field,southern Tibet[J]. Geothermics,2021,97:102233. doi: 10.1016/j.geothermics.2021.102233
[22] 赵平,金建,张海政,等. 西藏羊八井地热田热水的化学组成[J]. 地质科学,1998,33(1):61 − 72. [ZHAO Ping,JIN Jian,ZHANG Haizheng,et al. Chemical composition of thermal water in the Yangbajing geothermal field,Tibet[J]. Chinese Journal of Geology,1998,33(1):61 − 72. (in Chinese with English abstract)] doi: 10.3321/j.issn:0563-5020.1998.01.016
ZHAO Ping, JIN Jian, ZHANG Haizheng, et al. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet[J]. Chinese Journal of Geology, 1998, 33(1): 61 − 72. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.1998.01.016
[23] YUAN Jianfei,GUO Qinghai,WANG Yanxin. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields,Tibet,China[J]. Journal of Geochemical Exploration,2014,140:11 − 22. doi: 10.1016/j.gexplo.2014.01.006
[24] LUO Ji,PANG Zhonghe,KONG Yanlong,et al. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area,western Sichuan,China[J]. Environmental Earth Sciences,2017,76(9):343. doi: 10.1007/s12665-017-6659-9
[25] 袁兴成,张云辉,王鹰,等. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质,2023,43(2):357 − 372. [YUAN Xingcheng,ZHANG Yunhui,WANG Ying,et al. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology,2023,43(2):357 − 372. (in Chinese with English abstract)]
YUAN Xingcheng, ZHANG Yunhui, WANG Ying, et al. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 357 − 372. (in Chinese with English abstract)
[26] 姜哲,周训,陈柄桦,等. 四川康定市二道桥地区地下热水稳定同位素特征及热储温度计算[J]. 现代地质,2022,36(4):1183 − 1192. [JIANG Zhe,ZHOU Xun,CHEN Binghua,et al. Stable isotope characteristics of geothermal water and calculation of geothermal reservoir temperature in the Erdaoqiao area of Kangding in Sichuan Province[J]. Geoscience,2022,36(4):1183 − 1192. (in Chinese with English abstract)]
JIANG Zhe, ZHOU Xun, CHEN Binghua, et al. Stable isotope characteristics of geothermal water and calculation of geothermal reservoir temperature in the Erdaoqiao area of Kangding in Sichuan Province[J]. Geoscience, 2022, 36(4): 1183 − 1192. (in Chinese with English abstract)
[27] LI Jiexiang,SAGOE G,YANG Guang,et al. The application of geochemistry to bicarbonate thermal springs with high reservoir temperature:A case study of the Batang geothermal field,western Sichuan Province,China[J]. Journal of Volcanology and Geothermal Research,2019,371:20 − 31. doi: 10.1016/j.jvolgeores.2018.12.005
[28] TIAN Jiao,PANG Zhonghe,GUO Qi,et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the eastern Himalayan Syntax[J]. Geothermics,2018,74:92 − 105. doi: 10.1016/j.geothermics.2018.02.006
[29] QIN Xiwei,MA Haizhou,ZHANG Xiying,et al. Geochemical constraints on the origin and evolution of spring waters in the Changdu-Lanping-Simao basin,southwestern China[J]. Acta Geologica Sinica-English Edition,2019,93(4):1097 − 1112. doi: 10.1111/1755-6724.13853
[30] WANG Ying,YUAN Xingcheng,ZHANG Yunhui,et al. Hydrochemical,D–O–Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area,SW China:Insights into genetic mechanism and scaling potential[J]. Ore Geology Reviews,2023,158:105486. doi: 10.1016/j.oregeorev.2023.105486
[31] GLOK-GALLI M,VADILLO-PÉREZ I,JIMÉNEZ-GAVILÁN P,et al. Application of hydrochemical and multi-isotopic (87Sr/86Sr,δ13C-DIC,δ2H-H2O,δ18O-H2O) tools to determine contamination sources and processes in the Guadalhorce River Basin,southern Spain[J]. Science of the Total Environment,2022,828:154424. doi: 10.1016/j.scitotenv.2022.154424
[32] QU Shen,DUAN Limin,SHI Zheming,et al. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield,northern Ordos Basin,China[J]. Science of the Total Environment,2022,835:155519. doi: 10.1016/j.scitotenv.2022.155519
[33] SONG Kai,WANG Fei,PENG Yue,et al. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution,2022,305:119327. doi: 10.1016/j.envpol.2022.119327
[34] TORRES-MARTÍNEZ J A,MORA A,KNAPPETT P S K,et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research,2020,182:115962. doi: 10.1016/j.watres.2020.115962
[35] ZHENG Liugen,CHEN Xing,DONG Xianglin,et al. Using δ34S–SO4 and δ18O–SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei,China[J]. Ecotoxicology and Environmental Safety,2019,181:231 − 240. doi: 10.1016/j.ecoenv.2019.06.001
[36] BAO Yifan,PANG Zhonghe,HUANG Tianming,et al. Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir[J]. Applied Geochemistry,2022,145:105419. doi: 10.1016/j.apgeochem.2022.105419
[37] HU Daogong,WU Zhenhan,JIANG Wan,et al. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet[J]. Science in China Series D-earth Sciences,2005,48(9):1377 − 1386. doi: 10.1360/04yd0183
[38] 胡道功,吴珍汉,叶培盛,等. 西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄[J]. 地质通报,2003,22(11):936 − 940. [HU Daogong,WU Zhenhan,YE Peisheng,et al. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainq(e)ntanglha Mountains,Tibet[J]. Geological Bulletin of China,2003,22(11):936 − 940. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-2552.2003.11.017
HU Daogong, WU Zhenhan, YE Peisheng, et al. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainq(e)ntanglha Mountains, Tibet[J]. Geological Bulletin of China, 2003, 22(11): 936 − 940. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2003.11.017
[39] 胡培远,翟庆国,唐跃,等. 青藏高原拉萨地块新元古代(~925Ma)变质辉长岩的确立及其地质意义[J]. 科学通报,2016,61(19):2176 − 2186. [HU Peiyuan,ZHAI Qingguo,TANG Yue,et al. Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane,Tibetan Plateau and its geological significance[J]. Chinese Science Bulletin,2016,61(19):2176 − 2186. (in Chinese with English abstract)] doi: 10.1360/N972016-00143
HU Peiyuan, ZHAI Qingguo, TANG Yue, et al. Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance[J]. Chinese Science Bulletin, 2016, 61(19): 2176 − 2186. (in Chinese with English abstract) doi: 10.1360/N972016-00143
[40] 胡培远,翟庆国,赵国春,等. 青藏高原纳木错西缘新元古代中期岩浆事件:对北拉萨地块起源的约束[J]. 岩石学报,2019,35(10):3115 − 3129. [HU Peiyuan,ZHAI Qingguo,ZHAO Guochun,et al. Middle neoproterozoic magmatic event in the western Nam Tso area,Tibetan Plateau:Constraint on the origin of the North Lhasa terrane[J]. Acta Petrologica Sinica,2019,35(10):3115 − 3129. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2019.10.10
HU Peiyuan, ZHAI Qingguo, ZHAO Guochun, et al. Middle neoproterozoic magmatic event in the western Nam Tso area, Tibetan Plateau: Constraint on the origin of the North Lhasa terrane[J]. Acta Petrologica Sinica, 2019, 35(10): 3115 − 3129. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.10.10
[41] ZHONG Dalai,DING Lin. Discovery of high-pressure basic granulite in Namjagbarwa area,Tibet,China[J]. Chinese Science Bulletin,1996,41(1):87 − 88.
[42] LIU Y,ZHONG D. Petrology of high-pressure granulites from the eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology,1997,15(4):451 − 466. doi: 10.1111/j.1525-1314.1997.00033.x
[43] 许志琴,蔡志慧,张泽明,等. 喜马拉雅东构造结:南迦巴瓦构造及组构运动学[J]. 岩石学报,2008,24(7):1463 − 1476. [XU Zhiqin,CAI Zhihui,ZHANG Zeming,et al. Tectonics and fabric kinematics of the Namche Barwa terrane,Eastern Himalayan syntaxis[J]. Acta Petrologica Sinica,2008,24(7):1463 − 1476. (in Chinese with English abstract)]
XU Zhiqin, CAI Zhihui, ZHANG Zeming, et al. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan syntaxis[J]. Acta Petrologica Sinica, 2008, 24(7): 1463 − 1476. (in Chinese with English abstract)
[44] 许志琴,杨经绥,李海兵,等. 印度-亚洲碰撞大地构造[J]. 地质学报,2011,85(1):1 − 33. [XU Zhiqin,YANG Jingsui,LI Haibing,et al. On the tectonics of the India-Asia Collision[J]. Acta Geologica Sinica,2011,85(1):1 − 33. (in Chinese with English abstract)] doi: 10.1111/j.1755-6724.2011.00375.x
XU Zhiqin, YANG Jingsui, LI Haibing, et al. On the tectonics of the India-Asia Collision[J]. Acta Geologica Sinica, 2011, 85(1): 1 − 33. (in Chinese with English abstract) doi: 10.1111/j.1755-6724.2011.00375.x
[45] 张进江,季建清,钟大赉,等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑:地球科学),2003,33(4):373 − 383. [ZHANG Jinjiang,JI Jianqing,ZHONG Dalai,et al. Tectonic pattern and formation process of the Namcha Barwa Tectonic Junction in the Eastern Himalaya[J]. Science in China Series(D:Earth Sciences),2003,33(4):373 − 383. (in Chinese)]
ZHANG Jinjiang, JI Jianqing, ZHONG Dalai, et al. Tectonic pattern and formation process of the Namcha Barwa Tectonic Junction in the Eastern Himalaya[J]. Science in China Series(D: Earth Sciences), 2003, 33(4): 373 − 383. (in Chinese)
[46] NIE Junsheng,HORTON B K,HOKE G D,et al. Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau[M]. Colorado:Geological Society of America,2014:23-58.
[47] 丁林,钟大赉,潘裕生,等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报,1995,40(16):1497 − 1500. [DING Lin,ZHONG Dalai,PAN Yusheng,et al. Fission track evidence for rapid uplift of the Eastern Himalayan Tectonic Knot since the Pliocene[J]. Chinese Science Bulletin,1995,40(16):1497 − 1500. (in Chinese with English abstract)] doi: 10.3321/j.issn:0023-074X.1995.16.018
DING Lin, ZHONG Dalai, PAN Yusheng, et al. Fission track evidence for rapid uplift of the Eastern Himalayan Tectonic Knot since the Pliocene[J]. Chinese Science Bulletin, 1995, 40(16): 1497 − 1500. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.1995.16.018
[48] 郝光明,曾令森,赵令浩. 西藏南部南迦巴瓦地区中新世-上新世地壳深熔作用[J]. 岩石学报,2021,37(11):3501 − 3512. [HAO Guangming,ZENG Lingsen,ZHAO Linghao. Miocene-Pleistocene crustal anatexis in the Namche Barwa massif,southern Tibet[J]. Acta Petrologica Sinica,2021,37(11):3501 − 3512. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2021.11.15
HAO Guangming, ZENG Lingsen, ZHAO Linghao. Miocene-Pleistocene crustal anatexis in the Namche Barwa massif, southern Tibet[J]. Acta Petrologica Sinica, 2021, 37(11): 3501 − 3512. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.15
[49] 彭琪. 拉月隧道温泉成因机制及地温场数值模拟研究[D]. 成都:成都理工大学,2020. [PENG Qi. Study on the Genesis mechanism of hot spring and numerical simulation of ground temperature field in Layue tunnel[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract)]
PENG Qi. Study on the Genesis mechanism of hot spring and numerical simulation of ground temperature field in Layue tunnel[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)
[50] 佟伟,廖志杰,刘时彬,等. 西藏温泉志[M]. 北京:科学出版社,2000. [TONG Wei,LIAO Zhijie,LIU Shibin,et al. Thermal springs in Tibet[M]. Beijing:Science Press,2000. (in Chinese)]
TONG Wei, LIAO Zhijie, LIU Shibin, et al. Thermal springs in Tibet[M]. Beijing: Science Press, 2000. (in Chinese)
[51] GUO Qinghai,WANG Yanxin. Geochemistry of hot springs in the Tengchong hydrothermal areas,Southwestern China[J]. Journal of Volcanology and Geothermal Research,2012,215/216:61 − 73. doi: 10.1016/j.jvolgeores.2011.12.003
[52] 张薇,王贵玲,赵佳怡,等. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质,2021,35(1):188 − 198. [ZHANG Wei,WANG Guiling,ZHAO Jiayi,et al. Geochemical characteristics of medium-high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience,2021,35(1):188 − 198. (in Chinese with English abstract)]
ZHANG Wei, WANG Guiling, ZHAO Jiayi, et al. Geochemical characteristics of medium-high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience, 2021, 35(1): 188 − 198. (in Chinese with English abstract)
[53] YANG Pingheng,LUO Dan,HONG Aihua,et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes[J]. Journal of Hydrology,2019,579:124116. doi: 10.1016/j.jhydrol.2019.124116
[54] 赵子锐,张薇,王贵玲,等. 冀中坳陷高阳地热田水文地球化学特征及其对地热成因的约束[J/OL]. 中国地质,(2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. [ZHAO Zirui,ZHANG Wei,WANG Guiling,et al. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J/OL]. Geology in China, (2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. (in Chinese with English abstract)]
ZHAO Zirui, ZHANG Wei, WANG Guiling, et al. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J/OL]. Geology in China, (2023-08-01)[2024-07-06]. http://kns.cnki.net/kcms/detail/11.1167.P.20230731.1742.006.html. (in Chinese with English abstract)
[55] BROWN S T,KENNEDY B M,DEPAOLO D J,et al. Ca,Sr,O and D isotope approach to defining the chemical evolution of hydrothermal fluids:Example from Long Valley,CA,USA[J]. Geochimica et Cosmochimica Acta,2013,122:209 − 225. doi: 10.1016/j.gca.2013.08.011
[56] SHAND P,DARBYSHIRE D P F,LOVE A J,et al. Sr isotopes in natural waters:Applications to source characterisation and water–rock interaction in contrasting landscapes[J]. Applied Geochemistry,2009,24(4):574 − 586. doi: 10.1016/j.apgeochem.2008.12.011
[57] 张卓,柳富田,陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质,2023,46(3):49 − 56. [ZHANG Zhuo,LIU Futian,CHEN Sheming. Review on the application of H,O,Sr,Ca,Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology,2023,46(3):49 − 56. (in Chinese with English abstract)]
ZHANG Zhuo, LIU Futian, CHEN Sheming. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater[J]. North China Geology, 2023, 46(3): 49 − 56. (in Chinese with English abstract)
[58] KROUSE H R,GRINENKO V A. Stable isotopes[M]. New York:Wiley,1991.
[59] TULI J K. Nuclear wallet cards for radioactive nuclides[Z]. Brookhaven National laboratory:National Nuclear Data Center,2004.
[60] 孟令群,聂振龙,王哲,等. 石羊河流域地下水中硫酸盐的水文地球化学特征及来源[J]. 黑龙江科学,2022,13(8):7 − 10. [MENG Lingqun,NIE Zhenlong,WANG Zhe,et al. Hydrogeochemical characteristics and sources of sulphate in groundwater of Shiyang River basin[J]. Heilongjiang Science,2022,13(8):7 − 10. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-8646.2022.08.002
MENG Lingqun, NIE Zhenlong, WANG Zhe, et al. Hydrogeochemical characteristics and sources of sulphate in groundwater of Shiyang River basin[J]. Heilongjiang Science, 2022, 13(8): 7 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-8646.2022.08.002
[61] 任坤,潘晓东,兰干江,等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学,2021,42(9):4267 − 4274. [REN Kun,PAN Xiaodong,LAN Ganjiang,et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using Sulfur and Oxygen isotopes[J]. Environmental Science,2021,42(9):4267 − 4274. (in Chinese with English abstract)]
REN Kun, PAN Xiaodong, LAN Ganjiang, et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using Sulfur and Oxygen isotopes[J]. Environmental Science, 2021, 42(9): 4267 − 4274. (in Chinese with English abstract)
[62] YUAN Fasong,MAYER B. Chemical and isotopic evaluation of sulfur sources and cycling in the Pecos River,New Mexico,USA[J]. Chemical Geology,2012,291:13 − 22. doi: 10.1016/j.chemgeo.2011.11.014
[63] PARNELL A C,INGER R,BEARHOP S,et al. Source partitioning using stable isotopes:Coping with too much variation[J]. PLOS One,2010,5(3):e9672. doi: 10.1371/journal.pone.0009672
[64] SU Pengyan,ZHANG Mingjun,QU Deye,et al. Contrasting water use strategies of tamarix ramosissima in different habitats in the Northwest of Loess Plateau,China[J]. Water,2020,12(10):2791. doi: 10.3390/w12102791
[65] 李智滔,肖红伟,伍作亭,等. 基于水化学及氮氧同位素技术的硝酸盐来源解析——以鄱阳湖湿地为例[J]. 中国环境科学,2022,42(9):4315 − 4322. [LI Zhitao,XIAO Hongwei,WU Zuoting,et al. Hydrochemistry,Nitrogen and Oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science,2022,42(9):4315 − 4322. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6923.2022.09.039
LI Zhitao, XIAO Hongwei, WU Zuoting, et al. Hydrochemistry, Nitrogen and Oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science, 2022, 42(9): 4315 − 4322. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2022.09.039
[66] 马剑飞,李向全,张春潮,等. 西藏波密冰川覆盖区大型河流与断裂带地下水转化关系[J]. 水文地质工程地质,2021,48(5):23 − 33. [MA Jianfei,LI Xiangquan,ZHANG Chunchao,et al. Transformation characteristics of the large-flow river and groundwater in the fault zone in the glacier-covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology,2021,48(5):23 − 33. (in Chinese with English abstract)]
MA Jianfei, LI Xiangquan, ZHANG Chunchao, et al. Transformation characteristics of the large-flow river and groundwater in the fault zone in the glacier-covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 23 − 33. (in Chinese with English abstract)
[67] 刘通,刘传周,吴福元,等. 新特提斯洋的打开时间和机制:雅江缝合带混杂岩的约束[J]. 中国科学(地球科学),2023,53(12):2846 − 2867. [LIU Tong,LIU Chuanzhou,WU Fuyuan,et al. Timing and mechanism of opening the Neo-Tethys Ocean:Constraints from mélanges in the Yarlung Zangbo suture zone[J]. Science China Earth Sciences,2023,53(12):2846 − 2867. (in Chinese with English abstract)]
LIU Tong, LIU Chuanzhou, WU Fuyuan, et al. Timing and mechanism of opening the Neo-Tethys Ocean: Constraints from mélanges in the Yarlung Zangbo suture zone[J]. Science China Earth Sciences, 2023, 53(12): 2846 − 2867. (in Chinese with English abstract)
[68] 朱日祥,赵盼,赵亮. 新特提斯洋演化与动力过程[J]. 中国科学(地球科学),2022,52(1):1 − 25. [ZHU Rixiang,ZHAO Pan,ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica (Terrae),2022,52(1):1 − 25. (in Chinese with English abstract)]
ZHU Rixiang, ZHAO Pan, ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica (Terrae), 2022, 52(1): 1 − 25. (in Chinese with English abstract)
[69] 刘德民,陈梁,张莉,等. 西藏班公湖蛇绿混杂岩中硅质岩的地质地球化学特征及其形成构造环境[J]. 吉林大学学报(地球科学版),2023,53(6):1722 − 1733. [LIU Demin,CHEN Liang,ZHANG Li,et al. Geological and geochemical characteristics and forming environments of siliceous rocks in the Bangong lake ophiolite mélange,Tibet[J]. Journal of Jilin University(Earth Science Edition),2023,53(6):1722 − 1733. (in Chinese with English abstract)]
LIU Demin, CHEN Liang, ZHANG Li, et al. Geological and geochemical characteristics and forming environments of siliceous rocks in the Bangong lake ophiolite mélange, Tibet[J]. Journal of Jilin University(Earth Science Edition), 2023, 53(6): 1722 − 1733. (in Chinese with English abstract)
[70] 高旭波,向绚丽,侯保俊,等. 水化学—稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶,2020,39(5):629 − 636. [GAO Xubo,XIANG Xuanli,HOU Baojun,et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica,2020,39(5):629 − 636. (in Chinese with English abstract)] doi: 10.11932/karst2020y26
GAO Xubo, XIANG Xuanli, HOU Baojun, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629 − 636. (in Chinese with English abstract) doi: 10.11932/karst2020y26
[71] KUMAR U S,KUMAR B,RAI S,et al. Stable isotope ratios in precipitation and their relationship with meteorological conditions in the Kumaon Himalayas,India[J]. Journal of Hydrology,2010,391(1/2):1 − 8.
[72] 余浩文,刘昭,荣峰,等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报,2021,40(3):34 − 44. [YU Haowen,LIU Zhao,RONG Feng,et al. Characteristics and source mechanism of geothermal field in Cuona,Tibet[J]. Bulletin of Geological Science and Technology,2021,40(3):34 − 44. (in Chinese with English abstract)]
YU Haowen, LIU Zhao, RONG Feng, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34 − 44. (in Chinese with English abstract)
[73] GIGGENBACH W F. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3
[74] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1/4):41 − 50.
[75] PANG Zhonghe,REED M. Theoretical chemical thermometry on geothermal waters:Problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083 − 1091. doi: 10.1016/S0016-7037(98)00037-4
[76] 曾令森,高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报,2017,33(5):1420 − 1444. [ZENG Lingsen,GAO Li’e. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica,2017,33(5):1420 − 1444. (in Chinese with English abstract)]
ZENG Lingsen, GAO Li’e. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5): 1420 − 1444. (in Chinese with English abstract)
[77] 邸英龙,曾令森,张立飞,等. 藏南东部麻玛沟地区早古生代与中新世岩浆作用及其意义[J]. 岩石学报,2020,36(10):3081 − 3096. [DI Yinglong,ZENG Lingsen,ZHANG Lifei,et al. Early-Paleozoic and miocene magmatism of the mama valley and their significance,eastern South Tibet[J]. Acta Petrologica Sinica,2020,36(10):3081 − 3096. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2020.10.09
DI Yinglong, ZENG Lingsen, ZHANG Lifei, et al. Early-Paleozoic and miocene magmatism of the mama valley and their significance, eastern South Tibet[J]. Acta Petrologica Sinica, 2020, 36(10): 3081 − 3096. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.10.09
-