Geochemical characteristics and evolution process for hot spring gas of the north-south graben system in Qinghai−Xizang Plateau
-
摘要:
目前,对于青藏高原南部单个地热田的水文地球化学演化过程,已有较为清晰的认识,但对于该地区各个地堑系的热泉气体来源和空间特征及演化过程仍缺乏深入了解。通过对青藏高原南部3 个地堑(错那—沃卡、亚东—谷露、申扎—定结)的16个热泉气体进行采样与测试,研究分析了地热气体组分、同位素特征、地热气体来源、各地热气体物质含量与状态和地下热储温度的空间关系。以地幔缝合线为分界,识别了青藏高原南部3 种类型的热泉气体,取得以下结论:(1)地幔缝合线南北侧的温泉气体演化过程存在明显差异,且青藏高原南部部分温泉气体发生脱气分馏现象;(2)温泉气体中氦、碳主要来源于地壳,氦的运移主要依附于二氧化碳的流动;(3)研究区热储温度存在明显差异,亚东—谷露地堑温度较高(225 °C)。研究成果可为阐释青藏高原南部构造与地热气体及地热田的相关性提供参考,同时,对气体地球化学特征及其演化过程的深入探讨,对于深化对地下地质过程的认识以及推动地热资源的高效开发有重要意义。
Abstract:While the hydrogeochemical characteristics of a single geothermal field in Qinghai−Xizang Plateau are well understood, the study of hot spring gases in various graben systems and their spatial characteristics and evolutionary processes, remains insufficiently explored. The study reported 16 hot spring gases from three grabens (Cuona−Woka garben, Yadong−Gulu garben and Shenzha−Dingjie garben) in Qinghai−Xizang Plateau. The composition and isotopic characteristics as well as the sources of hot spring gas were analyzed. Additionally, the relationship between the content of hot spring gas and the reservior temperature was conducted in the three garbens. Three types of gases were distinguished in Qinghai−Xizang Plateau by using the “mantle suture line” as the boundary. The results show that hot spring gases in the north and south sides of the boundary have undergone different evolutionary processes, with some samples in the south showing evidence of degassing and fractionation. The sources of helium and carbon isotopes in the hot spring gases are mainly derived from the crust, and the migration of helium is dependent on the flow of carbon dioxide. There are significant differences of reservior temperature in the three garbens, with a higher temperature (225 °C) in the Yadong−Gulu graben. This study provides insights in understanding the relationship between structures, hot spring gases, and geothermal fields in Qinghai−Xizang Plateau. The exploration of gas geochemical characteristics and their evolutionary processes are significant for the understanding of the underground geological processes and the exploitation and utilization of geothermal resources.
-
Key words:
- geochemistry /
- geothermal gas /
- geothermal thermometer /
- gas isotopes
-
-
图 4 青藏高原南部温泉气体的δ13C-CO2 /3He关系(模型据文献[46]修改)
Figure 4.
表 1 青藏高原南部地热气体采样位置及主要气体组分占比
Table 1. Sampling locations and main gas components of geothermal gas in Qinghai−Xizang Plateau
样品编号 类型 He分界线
位置体积占比/% He H2 CH4 N2 O2 Ar CO2 XZ-022 CO2 北 4.0×10−4 890.0×10−4 0 3.5 0.8 0.1 94.8 XZ-023 CO2 北 53.0×10−4 9970.0 ×10−40.1 6.3 0.3 0.1 83.3 XZ-026 CO2 北 59.0×10−4 1.9×10−4 0 4.2 0.4 0 95.2 XZ-029 N2 北 6854.0 ×10−4— 5.6 91.4 1.1 1.2 0.1 XZ-030 N2 北 6561.0 ×10−4570.0×10−4 5.7 90.7 0.9 1.6 0 XZ-033 CO2 南 963.0×10−4 0 2.7 14.5 0.4 0.2 82.1 XZ-035 CO2 南 526.0×10−4 1.7×10−4 1.6 11.3 0.7 0.1 86.3 XZ-036 CO2 南 9.0×10−4 4.2×10−4 0.9 7.4 0.5 0.1 91.1 XZ-042 CO2 南 136.0×10−4 — — 5.0 0.3 0.1 94.6 XZ-043 CO2 南 21.0×10−4 — — 25.1 4.6 0.2 70.2 XZ-046 CO2 北 201.0×10−4 — 0.1 23.4 1.8 0.3 74.5 XZ-049 CO2 北 27.0×10−4 — 0.1 5.1 0.4 0.1 94.2 XZ-052 CO2 北 945.0×10−4 4.2×10−4 1.9 10 0.5 0.1 87.5 XZ-057 CO2 北 244.0×10−4 — 3.2 9.0 0.4 0.1 87.3 XZ-060 CO2 北 1326.0 ×10−4590.0×10−4 3.7 10.5 0.3 0.1 84.7 XZ-063 CO2 北 1366.0 ×10−40 0.1 24.9 1.1 0.2 73.7 36G N2 北 4588.0 ×10−4890.0×10−4 0.2 96.4 1.7 1.0 0.1 95G N2 北 5707.0 ×10−49970.0 ×10−40.1 90.5 8.5 0.7 0.1 96G N2 北 7037.0 ×10−41.9×10−4 0.1 95.5 3.4 0.8 0.1 48G CO2 北 2015.0 ×10−4— — 34.8 3.5 0.4 61.2 117G CO2 南 585.0×10−4 570.0×10−4 0 32.4 1.0 0.5 65.9 159G CO2 北 583.0×10−4 0.0 0.1 17.4 0.8 0.2 81.5 63G CO2 南 581.0×10−4 1.7×10−4 0.8 10.6 1.0 0.2 85.7 116G CO2 南 1546.0 ×10−44.2×10−4 0.1 15.1 0.8 0.2 83.8 46G CO2 北 52.0×10−4 — — 19.7 1.4 0.2 78.7 53G CO2 北 143.0×10−4 — — 20.8 4.3 0.2 74.6 155G CO2 北 91.0×10−4 — — 15.2 2.7 0.1 82.0 152G CO2 北 12.0×10−4 0 0.2 6.7 0.4 0 92.7 155G CO2 北 57.0×10−4 4.2×10−4 0.1 9.5 1.1 0 89.3 81G CO2 南 16.0×10−4 0 — 14.9 2.8 0.1 82.2 注:部分资料来源为文献[24];“—”表示未测试。 表 2 青藏高原南部地热气体He和C同位素组成
Table 2. He and C isotopes in the geothermal gas in Qinghai−Xizang Plateau
样品编号 RC/RA 4He/20Ne δ13CO2/‰ δ13CH4/‰ CO2/3He He来源占比/% CO2来源占比/% 大气 地幔 地壳 地幔 碳酸岩 有机物 XZ-022 0.50 3 −7.3 — 3.57×1011 9.9 4.9 85.2 0.4 72.6 26.9 XZ-023 0.32 26 −4.5 — 3.47×1010 1.2 3.7 95.1 4.3 80.0 15.6 XZ-026 0.09 67 −11.6 — 1.28×1011 0.4 0.9 98.6 1.2 56.1 42.7 XZ-029 0.10 1262 −12.0 −24.6 5.48×105 0.0 1.1 98.9 — — — XZ-030 0.10 1037 −8.7 −29.0 3.57×105 0.0 1.1 98.9 — — — XZ-033 0.05 634 −11.0 −12.0 1.28×1010 0.0 0.5 99.5 11.7 50.3 37.9 XZ-035 0.02 394 −11.1 −30.1 5.31×1010 0.0 0.1 99.8 2.8 56.7 40.4 XZ-036 0.12 4 −11.0 — 6.54×1011 7.5 0.4 92.0 0.2 59.1 40.7 XZ-042 0.06 126 −9.3 — 8.15×1010 0.2 0.6 99.2 1.9 64.1 34.0 XZ-043 0.18 3 −10.1 — 1.33×1011 9.9 0.9 89.2 1.1 61.7 37.1 XZ-046 0.19 88 −8.5 — 1.40×1010 0.3 2.2 97.5 10.7 60.4 28.9 XZ-049 0.35 21 −8.2 — 7.14×1010 1.5 4.1 94.4 2.1 68.0 29.9 XZ-052 0.03 1305 −7.5 −23.5 2.44×1010 0.0 0.3 99.8 6.2 67.5 26.3 XZ-057 0.03 272 −14.0 −40.6 7.58×1010 0.1 0.2 99.7 2.0 46.6 51.4 XZ-060 0.05 1304 −9.3 −26.3 9.13×109 0.0 0.5 99.5 16.4 53.1 30.5 XZ-063 0.06 687 −12.6 6.67×109 0.0 0.6 99.4 22.5 36.3 41.3 36G 0.07 322 −13.6 −31.4 2.40×106 0.1 0.7 99.2 — — — 95G 0.04 300 −13.9 −46.8 4.20×106 0.1 0.4 99.6 — — — 96G 0.04 460 −12.8 — 2.70×106 0.0 0.4 99.6 — — — 48G 0.07 288 −10.9 — 3.10×109 0.1 0.7 99.1 48.4 22.9 28.7 117G 0.11 141 −9.6 — 7.32×109 0.2 1.2 98.6 20.5 48.9 30.6 159G 0.12 433 −11.3 — 8.32×109 0.0 1.4 98.6 18.0 44.5 37.5 63G 0.05 1101 −9.2 — 2.11×1010 0.0 0.5 99.5 7.1 60.5 32.4 116G 0.02 2119 −1.3 −31.2 1.93×1010 0.0 0.1 99.9 7.8 89.3 2.9 46G 0.16 31 −7.3 — 6.36×1010 1.0 1.8 97.3 2.4 71.2 26.5 53G 0.04 34 −12.4 — 7.46×1010 0.9 0.3 98.8 2.0 52.5 45.4 155G 0.05 76 −11.8 — 1.29×1011 0.4 0.5 99.2 1.2 55.4 43.4 152G 0.17 37 −10.0 — 2.99×1011 0.8 1.9 97.3 0.5 62.6 36.9 155G 0.19 80 −6.0 — 5.89×1010 0.4 2.2 97.4 2.6 75.8 21.6 81G 0.07 8 −9.3 — 3.67×1011 3.8 0.3 95.9 0.4 65.2 34.3 注:“—”表示未测出或无法计算;大气3He/4He=1.39×10−6、4He/20Ne=0.318,地幔3He/4He=1.1×10−5、4He/20Ne= 1000 ,地壳3He/4He=1.5 ×10−8、4He/20Ne=1000 ;δ13C-CO2端部构件的值:地幔端元取值δ13C=(−6.5±2.5)‰,CO2/3He=2×109,碳酸盐端元取值δ13C=(0±1)‰,CO2/3He=1×1013,沉积物端元取值δ13C=(−30±10)‰,CO2/3He=1×1013。 -
[1] 汪集暘,庞忠和,孔彦龙,等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展,2020(3):293 − 298. [WANG Jiyang,PANG Zhonghe,KONG Yanlong,et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Developmen,2020(3):293 − 298. (in Chinese with English abstract)] doi: 10.11842/chips.20200516002
WANG Jiyang, PANG Zhonghe, KONG Yanlong, et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Developmen, 2020(3): 293 − 298. (in Chinese with English abstract) doi: 10.11842/chips.20200516002
[2] 刘畅,苏金宝. 西藏羊八井-宁中盆地地下水深循环三维模拟及对地热异常分布的限定[J]. 中国地质,2024,51(6):1868 − 1882. [LIU Chang,SU Jinbao. Geothermal distribution and forming mechanism:Insight from 3D numerical simulation on Yangbajing-Ningzhong Basin,Tibet[J]. Geology in China,2024,51(6):1868 − 1882. (in Chinese with English abstract)] doi: 10.12029/gc20230601001
LIU Chang, SU Jinbao. Geothermal distribution and forming mechanism: Insight from 3D numerical simulation on Yangbajing-Ningzhong Basin, Tibet[J]. Geology in China, 2024, 51(6): 1868 − 1882. (in Chinese with English abstract) doi: 10.12029/gc20230601001
[3] 邱楠生,唐博宁,朱传庆. 中国大陆地区温泉分布的深部热背景[J]. 地质学报,2022,96(1):195 − 207. [QIU Nansheng,TANG Boning,ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica,2022,96(1):195 − 207. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5717.2022.01.016
QIU Nansheng, TANG Boning, ZHU Chuanqing. Deep thermal background of hot spring distribution in the Chinese continent[J]. Acta Geologica Sinica, 2022, 96(1): 195 − 207. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.01.016
[4] 王晨光,郑绵平,张雪飞,等. 西藏南部古堆高温地热田水化学特征及其成因研究[J]. 地质学报,2024,98(2):558 − 578. [WANG Chenguang,ZHENG Mianping,ZHANG Xuefei,et al. Hydrochemical characteristics and origin of geothermal fluids in the Gudui high-temperature geothermal system in Comei County,southern Tibet[J]. Acta Geologica Sinica,2024,98(2):558 − 578. (in Chinese with English abstract)]
WANG Chenguang, ZHENG Mianping, ZHANG Xuefei, et al. Hydrochemical characteristics and origin of geothermal fluids in the Gudui high-temperature geothermal system in Comei County, southern Tibet[J]. Acta Geologica Sinica, 2024, 98(2): 558 − 578. (in Chinese with English abstract)
[5] 赵平. 常用气体地热温度计的应用及效果评价[J]. 地质科学,1993(2):167 − 176. [ZHAO Ping. Application and evaluation of gas geothermometers[J]. Chinese Journal of Geology,1993(2):167 − 176. (in Chinese with English abstract)]
ZHAO Ping. Application and evaluation of gas geothermometers[J]. Chinese Journal of Geology, 1993(2): 167 − 176. (in Chinese with English abstract)
[6] 赵平,多吉,谢鄂军,等. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报,2003,19(3):569 − 576. [ZHAO Ping,DUO Ji,XIE Ejun,et al. Strontium isotope data for thermal waters in selected high-temperature geothermal fields,China[J]. Acta Petrologica Sinica,2003,19(3):569 − 576. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0569.2003.03.023
ZHAO Ping, DUO Ji, XIE Ejun, et al. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China[J]. Acta Petrologica Sinica, 2003, 19(3): 569 − 576. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2003.03.023
[7] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学,2003(1):42 − 47. [DUO Ji. The basic characteristics of the Yangbajing geothermal field-a typical high temperature geothermal system[J]. Engineering Science,2003(1):42 − 47. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-1742.2003.01.008
DUO Ji. The basic characteristics of the Yangbajing geothermal field-a typical high temperature geothermal system[J]. Engineering Science, 2003(1): 42 − 47. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-1742.2003.01.008
[8] GUO Qinghai,WANG Yanxin,Liu Wei. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field,et al. China[J]. Journal of Volcanology and Geothermal Research,2007,166(3/4):255 − 268.
[9] 赵斌,吕玥,温柔,等. 西藏地热能开发利用现状及发展前景[J]. 热力发电,2023,52(1):1 − 6. [ZHAO Bin,LV Yue,WEN Rou,et al. Utilization situation and development prospect of geothermal energy in Tibet[J]. Thermal Power Generation,2023,52(1):1 − 6. (in Chinese with English abstract)]
ZHAO Bin, LV Yue, WEN Rou, et al. Utilization situation and development prospect of geothermal energy in Tibet[J]. Thermal Power Generation, 2023, 52(1): 1 − 6. (in Chinese with English abstract)
[10] 庞菊梅,王英男,金爱芳,等. 承德北部茅荆坝地热田地热流体的水化学和同位素特征及其成因[J]. 水文地质工程地质,2024,51(1):224 − 236. [PANG Jumei,WANG Yingnan,JIN Aifang,et al. Hydrochemical and isotopic characteristics and genesis of geothermal fluids in the Maojingba geothermal field,northern Chengde City[J]. Hydrogeology & Engineering Geology,2024,51(1):224 − 236. (in Chinese with English abstract)]
PANG Jumei, WANG Yingnan, JIN Aifang, et al. Hydrochemical and isotopic characteristics and genesis of geothermal fluids in the Maojingba geothermal field, northern Chengde City[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 224 − 236. (in Chinese with English abstract)
[11] 范翼帆,段忠丰,杨永红,等. 热储特征对砂岩热储采灌井距的影响-以济阳坳陷为例[J]. 水文地质工程地质,2024,51(1):215 − 223. [FAN Yifan,DUAN Zhongfeng,YANG Yonghong,et al. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir:A case study of Jiyang depression[J]. Hydrogeology & Engineering Geology,2024,51(1):215 − 223. (in Chinese with English abstract)]
FAN Yifan, DUAN Zhongfeng, YANG Yonghong, et al. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir: A case study of Jiyang depression[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 215 − 223. (in Chinese with English abstract)
[12] 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展,2015,3(1):38 − 46. [LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Enengy,2015,3(1):38 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-560X.2015.01.007
LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Enengy, 2015, 3(1): 38 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2015.01.007
[13] PANG Zhonghe,REED M. Theoretical chemical thermometry on geothermal waters:Problems and methods[J]. Geochimica et Cosmochimica Acta,1998,62(6):1083 − 1091. doi: 10.1016/S0016-7037(98)00037-4
[14] 李义曼,庞忠和,罗霁,等. SiO2地温计沸腾校正方法在高原地区的适用性分析[J]. 地质论评,2021,67(4):1050 − 1056. [LI Yiman,PANG Zhonghe,LUO Ji,et al. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review,2021,67(4):1050 − 1056. (in Chinese with English abstract)]
LI Yiman, PANG Zhonghe, LUO Ji, et al. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review, 2021, 67(4): 1050 − 1056. (in Chinese with English abstract)
[15] GUO Qinghai. Hydrogeochemistry of high-temperature geothermal systems in China:A review[J]. Applied Geochemistry,2012,27(10):1887 − 1898. doi: 10.1016/j.apgeochem.2012.07.006
[16] 郭清海,刘明亮,李洁祥. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学,2017,42(2):286 − 297. [GUO Qinghai,LIU Mingliang,LI Jiexiang. Thioarsenic species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses[J]. Earth Science,2017,42(2):286 − 297. (in Chinese with English abstract)]
GUO Qinghai, LIU Mingliang, LI Jiexiang. Thioarsenic species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses[J]. Earth Science, 2017, 42(2): 286 − 297. (in Chinese with English abstract)
[17] 李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展,2018,6(4):274 − 281. [LI Yiman,PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Enengy,2018,6(4):274 − 281. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-560X.2018.04.004
LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Enengy, 2018, 6(4): 274 − 281. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-560X.2018.04.004
[18] 天娇,庞忠和,李义曼,等. 地热气体研究进展[J]. 地质学报,2022,96(5):1752 − 1766. [TIAN Jiao,PANG Zhonghe,LI Yiman,et al. Research progress on geothermal gas[J]. Acta Geologica Sinica,2022,96(5):1752 − 1766. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5717.2022.05.015
TIAN Jiao, PANG Zhonghe, LI Yiman, et al. Research progress on geothermal gas[J]. Acta Geologica Sinica, 2022, 96(5): 1752 − 1766. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.05.015
[19] LOWENSTERN J B,BERGFELD D,EVANS W C,et al. Origins of geothermal gases at Yellowstone[J]. Journal of Volcanology and Geothermal Research,2015,302:87 − 101. doi: 10.1016/j.jvolgeores.2015.06.010
[20] HOKE L,LAMB S,HILTON D R,et al. Southern limit of mantle-derived geothermal Helium emissions in Tibet:Implications for lithospheric structure[J]. Earth and Planetary Science Letters,2000,180(3/4):297 − 308.
[21] KLEMPERER S L,KENNEDY B M,SASTRY S R,et al. Mantle fluids in the Karakoram fault:Helium isotope evidence[J]. Earth and Planetary Science Letters,2013,366:59 − 70. doi: 10.1016/j.jpgl.2013.01.013
[22] KLEMPERER S L,ZHAO Ping,WHYTE C J,et al. Limited underthrusting of India below Tibet:3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences,2022,119(12):2113877119. doi: 10.1073/pnas.2113877119
[23] 万汉平,张松,高洪雷,等. 西藏谷露地热田水热系统成因机制[J]. 世界核地质科学,2023,40(3):687 − 700. [WAN Hanping,ZHANG Song,GAO Honglei,et al. Hydrothermal system formation mechanism of Gulu geothermal field[J]. World Nuclear Geoscience,2023,40(3):687 − 700. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-0636.2023.03.001
WAN Hanping, ZHANG Song, GAO Honglei, et al. Hydrothermal system formation mechanism of Gulu geothermal field[J]. World Nuclear Geoscience, 2023, 40(3): 687 − 700. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0636.2023.03.001
[24] HAO Yinlei,KUANG Xingxing,FENG Yuqing,et al. Discovery and genesis of helium-rich geothermal fluids along the India–Asia continental convergent margin[J]. Geochimica et Cosmochimica Acta,2023,360:175 − 191. doi: 10.1016/j.gca.2023.09.011
[25] YIN A,HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211 − 280. doi: 10.1146/annurev.earth.28.1.211
[26] 莫宣学,赵志丹,邓晋福,等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘,2003,10(3):135 − 148. [MO Xuanxue,ZHAO Zhidan,DENG Jinfu,et al. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers,2003,10(3):135 − 148. (in Chinese with English abstract)] doi: 10.3321/j.issn:1005-2321.2003.03.013
MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers, 2003, 10(3): 135 − 148. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2003.03.013
[27] 莫宣学,赵志丹,朱弟成,等. 西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束[J]. 地球科学-中国地质大学学报,2009,34(1):17 − 27. [MO Xuanxue,ZHAO Zhidan,ZHU Dicheng,et al. On the lithosphere of Indo-Asia collision zone in southern Tibet:Petrological and geoehemical constraints[J]. Earth Science-Journal of China University of Geosciences,2009,34(1):17 − 27. (in Chinese with English abstract)] doi: 10.3799/dqkx.2009.003
MO Xuanxue, ZHAO Zhidan, ZHU Dicheng, et al. On the lithosphere of Indo-Asia collision zone in southern Tibet: Petrological and geoehemical constraints[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1): 17 − 27. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.003
[28] MO Xuanxue,NIU Yaoling,DONG Guochen,et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology,2008,250(1/4):49 − 67.
[29] 莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学,2020,45(7):2245 − 2257. [MO Xuanxue. Growth and evolution of crust of tibetan plateau from perspective of magmatic rocks[J]. Earth Science,2020,45(7):2245 − 2257. (in Chinese with English abstract)]
MO Xuanxue. Growth and evolution of crust of tibetan plateau from perspective of magmatic rocks[J]. Earth Science, 2020, 45(7): 2245 − 2257. (in Chinese with English abstract)
[30] 吴福元,万博,赵亮,等. 特提斯地球动力学[J]. 岩石学报,2020,36(6):1627 − 1674. [WU Fuyuan,WAN Bo,ZHAO Liang,et al. Tethyan geodynamics[J]. Acta Petrologica Sinica,2020,36(6):1627 − 1674. (in Chinese with English abstract)] doi: 10.18654/1000-0569/2020.06.01
WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627 − 1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01
[31] ARMIJO R,TAPPONNIER P,MERCIER J L,et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research:Solid Earth,1986,91(B14):13803 − 13872. doi: 10.1029/JB091iB14p13803
[32] TAYLOR M,YIN An,RYERSON F J,et al. Conjugate strike‐slip faulting along the Bangong‐Nujiang suture zone accommodates coeval East‐West extension and North‐South shortening in the interior of the Tibetan Plateau[J]. Tectonics,2003,22(4):18.1 − 18.20.
[33] 李亚林,王成善,伊海生,等. 青藏高原新生代地堑构造研究中几个问题的讨论[J]. 地质论评,2005,51(5):493 − 501. [LI Yalin,WANG Chengshan,YI Haisheng,et al. A discussion on several problems regarding to the cenozoic grabens in the Qinghai-Tibet plateau[J]. Geological Review,2005,51(5):493 − 501. (in Chinese with English abstract)] doi: 10.3321/j.issn:0371-5736.2005.05.002
LI Yalin, WANG Chengshan, YI Haisheng, et al. A discussion on several problems regarding to the cenozoic grabens in the Qinghai-Tibet plateau[J]. Geological Review, 2005, 51(5): 493 − 501. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2005.05.002
[34] 才巴央增,赵俊猛. 藏南裂谷系的研究综述[J]. 地震研究,2018,41(1):14 − 21. [CAIbayangzeng,ZHAO Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research,2018,41(1):14 − 21. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0666.2018.01.002
CAIbayangzeng, ZHAO Junmeng. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research, 2018, 41(1): 14 − 21. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2018.01.002
[35] 张佳伟,李汉敖,张会平,等. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展,2020,35(8):848 − 862. [ZHANG Jiawei,LI Hanao,ZHANG Huiping,et al. Research progress in cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science,2020,35(8):848 − 862. (in Chinese with English abstract)] doi: 10.11867/j.issn.1001-8166.2020.064
ZHANG Jiawei, LI Hanao, ZHANG Huiping, et al. Research progress in cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science, 2020, 35(8): 848 − 862. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2020.064
[36] TIAN Jiao,ZHOU Xiaocheng,YAN Yucong,et al. Earthquake-induced impulsive release of water in the fractured aquifer system:Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau[J]. Applied Geochemistry,2023,148:105553. doi: 10.1016/j.apgeochem.2022.105553
[37] 沈显杰. 西藏喜马拉雅地热带地热资源量级估算的方法探讨[J]. 地质科学,1992,27(增刊1):302 − 312. [SHEN Xianjie. An order of magnitude estimation of high temperature geothermal resources of the himalayan geothermal belt,Xizang (TIBET)[J]. Scientia Geologica Sinica,1992,27(Sup1):302 − 312. (in Chinese with English abstract)]
SHEN Xianjie. An order of magnitude estimation of high temperature geothermal resources of the himalayan geothermal belt, Xizang (TIBET)[J]. Scientia Geologica Sinica, 1992, 27(Sup1): 302 − 312. (in Chinese with English abstract)
[38] 滕吉文,杨顶辉,田小波,等. 青藏高原深部地球物理探测70年[J]. 中国科学(地球科学),2019,49(10):1546 − 1564. [TENG Jiwen,YANG Dinghui,TIAN Xiaobo,et al. 70 years of deep geophysical exploration in the Qinghai Tibet Plateau[J]. Scientia Sinica Terrae,2019,49(10):1546 − 1564. (in Chinese with English abstract)] doi: 10.1360/SSTe-2019-0132
TENG Jiwen, YANG Dinghui, TIAN Xiaobo, et al. 70 years of deep geophysical exploration in the Qinghai Tibet Plateau[J]. Scientia Sinica Terrae, 2019, 49(10): 1546 − 1564. (in Chinese with English abstract) doi: 10.1360/SSTe-2019-0132
[39] DUCHKOV A D,RYCHKOVA K M,LEBEDEV V I,et al. Estimation of heat flow in Tuva from data on Helium isotopes in thermal mineral springs[J]. Russian Geology and Geophysics,2010,51(2):209 − 219. doi: 10.1016/j.rgg.2009.12.023
[40] 杨立铮,卫迦,孙晋玉. 四川康定温泉系统深源CO2释放研究[J]. 地质学报,1999,73(3):278 − 285. [YANG Lizheng,WEI Jia,SUN Jinyu. A study of the Deep-Source CO2 release of the hot springs system in kangding,Sichuan province[J]. Acta Geologica Sinica,1999,73(3):278 − 285. (in Chinese with English abstract)] doi: 10.3321/j.issn:0001-5717.1999.03.009
YANG Lizheng, WEI Jia, SUN Jinyu. A study of the Deep-Source CO2 release of the hot springs system in kangding, Sichuan province[J]. Acta Geologica Sinica, 1999, 73(3): 278 − 285. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1999.03.009
[41] DUBACQ B,BICKLE M J,EVANS K A. An activity model for phase equilibria in the H2O–CO2–NaCl system[J]. Geochimica et Cosmochimica Acta,2013,110:229 − 252. doi: 10.1016/j.gca.2013.02.008
[42] WANG Yingchun,ZHOU Xiaocheng,TIAN Jiao,et al. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau:Constraints on regional seismic activities[J]. Journal of Hydrology,2023,617:129042. doi: 10.1016/j.jhydrol.2022.129042
[43] ZHANG Maoliang,XIE Xiangang,LIU Wei,et al. Hydrothermal degassing through the Karakoram fault,western Tibet:Insights into active deformation driven by continental strike‐slip faulting[J]. Geophysical Research Letters,2024,51(4):e2023GL106647. doi: 10.1029/2023GL106647
[44] 王迎春,周金林,李亮,等. 羊八井地热田地热地质条件及其对超临界地热资源勘探的启示[J]. 天然气工业,2022,42(4):35 − 45. [WANG Yingchun,ZHOU Jinlin,LI Liang,et al. Geothermal geological conditions in the Yangbajing geothermal field and its Enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry,2022,42(4):35 − 45. (in Chinese with English abstract)] doi: 10.3787/j.issn.1000-0976.2022.04.003
WANG Yingchun, ZHOU Jinlin, LI Liang, et al. Geothermal geological conditions in the Yangbajing geothermal field and its Enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry, 2022, 42(4): 35 − 45. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2022.04.003
[45] CHAPMAN J B,KAPP P. Tibetan magmatism database[J]. Geochemistry Geophysics Geosystems,2017,18(11):4229 − 4234. doi: 10.1002/2017GC007217
[46] SANO Yuji,MARTY B. Origin of Carbon in fumarolic gas from island arcs[J]. Chemical Geology,1995,119(1/4):265 − 274.
[47] BALLENTINE C J,BURGESS R,MARTY B. Tracing fluid origin,transport and interaction in the crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):539 − 614. doi: 10.2138/rmg.2002.47.13
[48] ZHANG Maoliang,ZHANG Lihong,ZHAO Wenbin,et al. Metamorphic CO2 emissions from the southern Yadong-Gulu rift,Tibetan Plateau:Insights into deep Carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology,2021,584:120534. doi: 10.1016/j.chemgeo.2021.120534
[49] FERRY J M. Overview of the petrologic record of fluid flow during regional metamorphism in northern New England[J]. American Journal of Science,1994,294(8):905 − 988. doi: 10.2475/ajs.294.8.905
[50] BARRY P H,NEGRETE-ARANDA R,SPELZ R M,et al. Volatile sources,sinks and pathways:A helium-carbon isotope study of Baja California fluids and gases[J]. Chemical Geology,2020,550:119722. doi: 10.1016/j.chemgeo.2020.119722
[51] GIGGENBACH W F,SANO Y,WAKITA H. Isotopic composition of Helium,and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et Cosmochimica Acta,1993,57(14):3427 − 3455. doi: 10.1016/0016-7037(93)90549-C
[52] CHIODINI G,MARINI L. Hydrothermal gas equilibria:The H2O-H2-CO2-CO-CH4 system[J]. Geochimica et Cosmochimica Acta,1998,62(15):2673 − 2687. doi: 10.1016/S0016-7037(98)00181-1
[53] GIGGENBACH W F. Redox processes governing the chemistry of fumarolic gas discharges from White Island,New Zealand[J]. Applied Geochemistry,1987,2(2):143 − 161. doi: 10.1016/0883-2927(87)90030-8
[54] UENO Y,YAMADA K,YOSHIDA N,et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J]. Nature,2006,440(7083):516 − 519. doi: 10.1038/nature04584
[55] 赵慈平,冉华,陈坤华. 腾冲火山区壳内岩浆囊现今温度:来自温泉逸出气体CO2、CH4间碳同位素分馏的估计[J]. 岩石学报,2011,27(10):2883 − 2897. [ZHAO Ciping,RAN Hua,CHEN Kunhua. Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field,southwestern China:Estimation from carbon isotopic fractionation between CO2 and CH4 of free gases escaped from thermal springs[J]. Acta Petrologica Sinica,2011,27(10):2883 − 2897. (in Chinese with English abstract)]
ZHAO Ciping, RAN Hua, CHEN Kunhua. Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field, southwestern China: Estimation from carbon isotopic fractionation between CO2 and CH4 of free gases escaped from thermal springs[J]. Acta Petrologica Sinica, 2011, 27(10): 2883 − 2897. (in Chinese with English abstract)
[56] HORITA J,BERNDT M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions[J]. Science,1999,285(5430):1055 − 1057. doi: 10.1126/science.285.5430.1055
[57] FIEBIG J,WOODLAND A B,SPANGENBERG J,et al. Natural evidence for rapid abiogenic hydrothermal Generation of CH4[J]. Geochimica et Cosmochimica Acta,2007,71(12):3028 − 3039. doi: 10.1016/j.gca.2007.04.010
[58] LI Yiman,ZHOU Xiaocheng,HUANG Tianming,et al. Origins of volatiles and helium fluxes from hydrothermal systems in the Eastern Himalayan Syntaxis and constraints on regional heat and tectonic activities[J]. Journal of Hydrology,2024,631:130776. doi: 10.1016/j.jhydrol.2024.130776
[59] DUNAI T J,PORCELLI D. Storage and transport of noble gases in the subcontinental lithosphere[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):371 − 409. doi: 10.2138/rmg.2002.47.10
[60] BECKER J A,BICKLE M J,GALY A,et al. Himalayan metamorphic CO2 fluxes:Quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters,2008,265(3/4):616 − 629.
[61] LI Chang,VAN DER HILST R D,MELTZER A S,et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters,2008,274(1/2):157 − 168.
[62] CHEN Min,NIU Fenglin,TROMP J,et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature Communications,2017,8(1):15659. doi: 10.1038/ncomms15659
[63] NEWELL D L,JESSUP M J,COTTLE J M,et al. Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan plateau:Implications for fluid sources and regional degassing of CO2[J]. Geochemistry,Geophysics,Geosystems,2008,9(8):Q08014.
[64] CHEN Yun,LI Wei,YUAN Xiaohui,et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters,2015,413:13 − 24. doi: 10.1016/j.jpgl.2014.12.041
[65] LI Jiangtao,SONG Xiaodong. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences,2018,115(33):8296 − 8300. doi: 10.1073/pnas.1717258115
[66] ZHAO Wenbin,GUO Zhengfu,ZHENG Guodong,et al. Subducting Indian lithosphere controls the deep carbon emission in Lhasa terrane,southern Tibet[J]. Journal of Geophysical Research:Solid Earth,2022,127:e2022JB024250. doi: 10.1029/2022JB024250
[67] WANG Yingchun,GU Hongyu,LI Dan,et al. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County,southern Tibet[J]. Environmental Earth Sciences,2021,80(11):415. doi: 10.1007/s12665-021-09577-8
[68] WANG Yingchun, QUAN Sanyu, TANG Xing, et al. Organic and inorganic carbon sinks reduce long-term deep carbon emissions in the continental collision margin of the southern Tibetan Plateau: Implications for Cenozoic climate cooling[J]. Journal of Geophysical Research: Solid Earth,2024,129(4):e2024JB028802.
[69] WANG Yingchun, ZHOU Xiaocheng, Tian Jiao, et al. Spatiotemporal characteristics of hydrothermal volatiles from the Tengchong volcanic field in the southeastern Tibetan Plateau:A probable constraint on the genesis of intraplate volcanism[J]. Journal of Volcanology and Geothermal Research,2025,457:108237.
[70] TANG Xing, WANG Yingchun, JIA Haoxin, et al. Thermal budget of hydrothermal systems for the Xianshuihe fault belt in the SE Tibetan Plateau: Insights to the geothermal accumulation processes[J]. Geothermics,2025,125:103189.
[71] WANG Yingchun,Li Liang,WEN Huaguo,et al. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet[J]. Journal of Hydrology,2022,604:127243.
-