Effect of cut-off walls on submarine groundwater discharge in non-isothermal conditions
-
摘要:
温度变化会影响海岸带地下水运移特征,但之前关于截渗工程条件下地下水排泄过程的研究仅限于等温条件,没有考虑非等温过程的影响。文章构建了场地尺度的二维地下水-盐-热耦合数值模型,探究非等温条件下截渗墙对地下水排泄过程的影响,重点关注地下水排泄动态变化特征与温度的关系,采用地下水排海通量(Q)与相对排泄量(Q')定量评价海水温度对地下水排海通量的影响。研究结果表明:(1)在高温海水条件下,Q'达到平衡的时间显著缩短;(2)海水温度变化会改变截渗墙与咸水楔对地下水渗流的影响程度;(3)低温海水情况下咸水楔对地下水渗流的阻碍作用大于墙体本身,而高温海水条件下截渗墙的阻碍效果更为显著;(4)海水温度高于地下水15 °C时,咸水区内更易产生并维持反向环流,导致咸水区地下水循环加速,进而增加地下水排海总量。研究成果可为截渗工程结构优化和滨海地下水资源可持续利用提供重要技术支撑。
Abstract:Temperature could change the migration characteristics of coastal groundwater. However, research on groundwater discharge processes under the influences of cut-off walls has been limited to isothermal conditions. This study built a two-dimensional numerical model coupling groundwater flow and salt transport in non-isothermal conditions at the site scale to investigate the impact of cut-off walls on groundwater discharge processes, considering the thermal effect. We focused on the dynamic characteristics of submarine groundwater discharge in non-isothermal conditions which are common in reality. This research quantitatively assessed the influence of seawater temperature on groundwater discharge flux (Q) and relative discharge flux (Q'). The results indicate that, under high-temperature seawater conditions, the timescale for Q' to reach equilibrium is significantly reduced. Specifically, higher freshwater temperatures and lower seawater temperatures could result in a greater Q'. However, when the seawater temperature exceeded the groundwater temperature by 15°C, reverse circulation is more likely to develop in the saltwater zone, which accelerates groundwater circulation and increases the total groundwater discharge into the sea, resulting in a corresponding rise in the Q' value. This study is significant for cut-off wall structure optimization and coastal groundwater sustainable utilization.
-
Key words:
- seawater intrusion /
- thermal effect /
- coastal aquifer /
- numerical simulation
-
-
模型参数 参数取值 单位 含水层厚度(H) 50 m 含水层长度(L) 400 m 有效孔隙度(n) 0.4 — 水力梯度(dh/dL) 4.0 ‰ 淡水质量浓度(Cf) 0 g/L 咸水质量浓度(Cs) 35 g/L 渗透率(ks) 2×10−11 m2 纵向弥散度(αL) 1.00 m 横向弥散度(αT) 0.1×αL m 多孔介质导热系数(λ) 0.6 J/(m·°C·s) 流体导热系数(λp) 3.5 J/(m·°C·s) 固体骨架比热容(cp,p) 4182 J/(kg·°C) 流体比热容(cp) 840 J/(kg·°C) 固体骨架密度(ρp) 2650 kg/m3 -
[1] ALLOW K A. The use of injection wells and a subsurface barrier in the prevention of seawater intrusion:A modelling approach[J]. Arabian Journal of Geosciences,2012,5(5):1151 − 1161. doi: 10.1007/s12517-011-0304-9
[2] THOMAS B F,FAMIGLIETTI J S. Identifying climate-induced groundwater depletion in GRACE observations[J]. Scientific Reports,2019,9(1):4124. doi: 10.1038/s41598-019-40155-y
[3] KETABCHI H,MAHMOODZADEH D,ATAIE-ASHTIANI B,et al. Sea-level rise impacts on seawater intrusion in coastal aquifers:Review and integration[J]. Journal of Hydrology,2016,535:235 − 255. doi: 10.1016/j.jhydrol.2016.01.083
[4] MELET A,MEYSSIGNAC B,ALMAR R,et al. Under-estimated wave contribution to coastal sea-level rise[J]. Nature Climate Change,2018,8(3):234 − 239. doi: 10.1038/s41558-018-0088-y
[5] LUYUN R,MOMII K,NAKAGAWA K. Laboratory-scale saltwater behavior due to subsurface cutoff wall[J]. Journal of Hydrology,2009,377(3/4):227 − 236.
[6] ISHIDA S,KOTOKU M,ABE E,et al. Construction of subsurface dams and their impact on the environment[J]. RMZ/Materials and Geoenvironment,2003(1):50.
[7] KIM J T,CHOO C O,KIM M I,et al. Validity evaluation of a groundwater dam in Oshipcheon River,eastern Korea using a SWAT–MODFLOW model[J]. Environmental Earth Sciences,2017,76(22):769. doi: 10.1007/s12665-017-7085-8
[8] SUN Qiguo,ZHENG Tianyuan,ZHENG Xilai,et al. Effectiveness and comparison of physical barriers on seawater intrusion and nitrate accumulation in upstream aquifers[J]. Journal of Contaminant Hydrology,2021,243:103913. doi: 10.1016/j.jconhyd.2021.103913
[9] ISHIDA S,TSUCHIHARA T,YOSHIMOTO S,et al. Sustainable use of groundwater with underground dams[J]. Japan Agricultural Research Quarterly,2011,45(1):51 − 61. doi: 10.6090/jarq.45.51
[10] NAWA N,MIYAZAKI K. The analysis of saltwater intrusion through Komesu underground dam and water quality management for salinity[J]. Paddy and Water Environment,2009,7(2):71 − 82. doi: 10.1007/s10333-009-0154-1
[11] SENTHILKUMAR M,ELANGO L. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin,southern India[J]. Hydrogeology Journal,2011,19(4):917 − 928. doi: 10.1007/s10040-011-0735-0
[12] 邢万里,陈小刚,杜金洲. 基于镭同位素示踪的嵊泗高场湾海底地下水排放[J]. 海洋环境科学,2019,38(6):817 − 824. [XING Wanli,CHEN Xiaogang,DU Jinzhou. Using radium isotopes to estimate SGD flux in Gaochang bay,Shengsi[J]. Marine Environmental Science,2019,38(6):817 − 824. (in Chinese with English abstract)] doi: 10.12111/j.mes20190601
XING Wanli, CHEN Xiaogang, DU Jinzhou. Using radium isotopes to estimate SGD flux in Gaochang bay, Shengsi[J]. Marine Environmental Science, 2019, 38(6): 817 − 824. (in Chinese with English abstract) doi: 10.12111/j.mes20190601
[13] MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science,2010,2(1):59 − 88. doi: 10.1146/annurev-marine-120308-081019
[14] 张成成. 镭同位素评估辽东湾海底地下水排泄及其携带营养盐通量[D]. 北京:中国地质大学(北京),2018. [ZHANG Chengcheng. Estimating submarine groundwater discharge and associated nutrient fluxes into Liaodong Bay using radium isotopes[D]. Beijing:China University of Geosciences (Beijing),2018. (in Chinese with English abstract)]
ZHANG Chengcheng. Estimating submarine groundwater discharge and associated nutrient fluxes into Liaodong Bay using radium isotopes[D]. Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract)
[15] WANG Xuejing,LI Hailong,JIAO Jiu Jimmy,et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports,2015,5(1):8814. doi: 10.1038/srep08814
[16] CHANG Qinpeng,ZHENG Tianyuan,ZHENG Xilai,et al. Effect of subsurface dams on saltwater intrusion and fresh groundwater discharge[J]. Journal of Hydrology,2019,576:508 − 519. doi: 10.1016/j.jhydrol.2019.06.060
[17] ZHANG Jiaxu,LU Chunhui,SHEN Chengji,et al. Flow and transport in coastal aquifer-aquitard systems:Experimental and numerical analysis[J]. Water Resources Research,2024,60(4):e2023WR035200. doi: 10.1029/2023WR035200
[18] ZHANG Jiaxu,LU Chunhui,ZHANG Chenming. Dense contaminants mixing into the saltwater wedge in coastal aquifers:Laboratory and numerical investigations[J]. Water Resources Research,2024,60(7):e2024WR037452. doi: 10.1029/2024WR037452
[19] CANTALICE JOS EACUTE R B,VICTOR C P,VIJAY P S,et al. Hydrology and water quality of a underground dam in a semiarid watershed[J]. African Journal of Agricultural Research,2016,11(28):2508 − 2518. doi: 10.5897/AJAR2016.11163
[20] CHANG Qinpeng,ZHENG Tianyuan,CHEN Youyuan,et al. Investigation of the elevation of saltwater wedge due to subsurface dams[J]. Hydrological Processes,2020,34(22):4251 − 4261. doi: 10.1002/hyp.13863
[21] BENZ S A,BAYER P,BLUM P. Global patterns of shallow groundwater temperatures[J]. Environmental Research Letters,2017,12(3):034005. doi: 10.1088/1748-9326/aa5fb0
[22] NGUYEN T T M,YU Xiayang,PU Li,et al. Effects of temperature on tidally influenced coastal unconfined aquifers[J]. Water Resources Research,2020,56(4):e2019WR026660. doi: 10.1029/2019WR026660
[23] LOCARNINI M M,MISHONOV A V,BARANOVA O K,et al. World Ocean Atlas 2018,Volume 1:Temperature[M]. [S.l.]:NOAA Atlas NESDIS 81,2018:52.
[24] OUDE ESSINK G H P. Improving fresh groundwater supply—Problems and solutions[J]. Ocean & Coastal Management,2001,44(5/6):429 − 449.
[25] PU Li,XIN Pei,NGUYEN T T M,et al. Thermal effects on flow and salinity distributions in coastal confined aquifers[J]. Water Resources Research,2020,56(10):e2020WR027582. doi: 10.1029/2020WR027582
[26] 杨辉瑜,郑西来,郑天元,等. 海水入侵含水层的非等温过程数值模拟研究[J]. 工程勘察,2022,50(12):39 − 46. [YANG Huiyu,ZHENG Xilai,ZHENG Tianyuan,et al. Numerical simulation of nonisothermal process of seawater intrusion in coastal aquifer[J]. Geotechnical Investigation & Surveying,2022,50(12):39 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1433.2022.12.gckc202212008
YANG Huiyu, ZHENG Xilai, ZHENG Tianyuan, et al. Numerical simulation of nonisothermal process of seawater intrusion in coastal aquifer[J]. Geotechnical Investigation & Surveying, 2022, 50(12): 39 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1433.2022.12.gckc202212008
[27] JAMSHIDZADEH Z,TSAI F T C,AHMAD MIRBAGHERI S,et al. Fluid dispersion effects on density-driven thermohaline flow and transport in porous media[J]. Advances in Water Resources,2013,61:12 − 28. doi: 10.1016/j.advwatres.2013.08.006
[28] 高明鹏,郑西来,郑天元,等. 截渗墙作用下滨海地下水渗流与排泄特征[J]. 中国海洋大学学报(自然科学版),2022,52(4):111 − 119. [GAO Mingpeng,ZHENG Xilai,ZHENG Tianyuan,et al. Seepage and discharge characteristics of coastal groundwater under the action of the cutoff wall[J]. Periodical of Ocean University of China(Science & Technology Edition),2022,52(4):111 − 119. (in Chinese with English abstract)]
GAO Mingpeng, ZHENG Xilai, ZHENG Tianyuan, et al. Seepage and discharge characteristics of coastal groundwater under the action of the cutoff wall[J]. Periodical of Ocean University of China(Science & Technology Edition), 2022, 52(4): 111 − 119. (in Chinese with English abstract)
-