非等温条件下截渗工程对海底地下水排泄的影响研究

郑天元, 辛晓, 王和, 高绍博, 刘乐成, 张博, 郑西来, 罗剑. 非等温条件下截渗工程对海底地下水排泄的影响研究[J]. 水文地质工程地质, 2025, 52(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202408027
引用本文: 郑天元, 辛晓, 王和, 高绍博, 刘乐成, 张博, 郑西来, 罗剑. 非等温条件下截渗工程对海底地下水排泄的影响研究[J]. 水文地质工程地质, 2025, 52(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202408027
ZHENG Tianyuan, XIN Xiao, WANG He, GAO Shaobo, LIU Lecheng, ZHANG Bo, ZHENG Xilai, LUO Jian. Effect of cut-off walls on submarine groundwater discharge in non-isothermal conditions[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202408027
Citation: ZHENG Tianyuan, XIN Xiao, WANG He, GAO Shaobo, LIU Lecheng, ZHANG Bo, ZHENG Xilai, LUO Jian. Effect of cut-off walls on submarine groundwater discharge in non-isothermal conditions[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202408027

非等温条件下截渗工程对海底地下水排泄的影响研究

  • 基金项目: 国家自然科学基金项目(42272282)
详细信息
    作者简介: 郑天元(1988—),男,博士,教授,主要从事滨海水文地质研究工作。E-mail:zhengtianyuan@ouc.edu.cn
  • 中图分类号: P641.2

Effect of cut-off walls on submarine groundwater discharge in non-isothermal conditions

More Information
    Author Bio: 郑天元,中国海洋大学环境科学与工程学院教授,博士生导师,国家优秀青年科学基金获得者,山东省“泰山学者”青年专家,山东省高等学校青年创新团队带头人。现任美国地球物理学会(AGU)地下水专业委员会委员, Journal of Hydrology副主编,国际水文科学协会中国地下水分委员会委员。  长期致力于滨海水文地质的前沿科学问题研究,开发了知名多场耦合多相流数值模拟软件OpenGeoSys的多个渗流计算模块,提出了积分模型耦合全尺寸模型的高效多相流模拟算法,拓展了滨海地下水源地硝酸盐污染的解析方法,揭示了海水入侵防控的水盐动力机理和咸水净化周期,阐明了滨海地下水氮素迁移-转化新机制。主持国家自然科学基金青年项目、面上项目和中国海洋大学优秀青年科技人才培育项目,2024年获批国家自然科学基金优秀青年科学基金项目,作为学术骨干参加国家自然科学基金重点项目和基金委-山东省联合基金重点项目。以第一/通讯作者在Water Resources ResearchWater ResearchAdvances in Water ResourcesJournal of Hydrology等期刊发表SCI论文30余篇,授权国家发明专利5项、软件著作权7项,参与出版英文专著2部,负责再版全国统编教材《地下水污染控制》。获2021年山东省科学技术进步二等奖(3/9)、2022年山东省海洋科技创新二等奖(1/7)、2023年齐鲁水利科学技术一等奖(1/9)。受邀担任国际水文地质大会、国际计算水资源大会等重要国际会议专题召集人 .
  • 温度变化会影响海岸带地下水运移特征,但之前关于截渗工程条件下地下水排泄过程的研究仅限于等温条件,没有考虑非等温过程的影响。文章构建了场地尺度的二维地下水-盐-热耦合数值模型,探究非等温条件下截渗墙对地下水排泄过程的影响,重点关注地下水排泄动态变化特征与温度的关系,采用地下水排海通量(Q)与相对排泄量(Q')定量评价海水温度对地下水排海通量的影响。研究结果表明:(1)在高温海水条件下,Q'达到平衡的时间显著缩短;(2)海水温度变化会改变截渗墙与咸水楔对地下水渗流的影响程度;(3)低温海水情况下咸水楔对地下水渗流的阻碍作用大于墙体本身,而高温海水条件下截渗墙的阻碍效果更为显著;(4)海水温度高于地下水15 °C时,咸水区内更易产生并维持反向环流,导致咸水区地下水循环加速,进而增加地下水排海总量。研究成果可为截渗工程结构优化和滨海地下水资源可持续利用提供重要技术支撑。

  • 加载中
  • 图 1  概念模型示意图

    Figure 1. 

    图 2  等温条件下在距海边界70 m处建造26 m高截渗墙后经过0,2,25,40 a残留咸水楔的浓度和流场分布

    Figure 2. 

    图 3  海水温度为20 °C(a)、5 °C(b)和35 °C(c)时,在距离海洋边界70 m处建造26 m高截渗墙后经过0,2,40 a时的渗透系数分布图

    Figure 3. 

    图 4  35 °C海水条件下,咸水楔稳定后地下水渗流分布的动态变化(a)以及在第一应力期50 a时建墙后浓度和流场的动态变化(b)

    Figure 4. 

    图 5  不同海水温度条件下地下水排泄量(a)与相对排泄量(b)的变化

    Figure 5. 

    图 6  地下水温度为20 °C(a)、5 °C(b)和35 °C(c)时,在距离海洋边界70 m处建造26 m高截渗墙后经过0,2,40 a时的渗透系数分布图

    Figure 6. 

    图 7  不同地下水温度下初始状态时的地下水浓度和流场分布(a—c)以及相对排泄量达到平衡时的地下水浓度和流场分布(d—f)

    Figure 7. 

    图 8  不同地下水温度条件下相对排泄量(Q')的变化

    Figure 8. 

    图 9  不同咸淡水温度组合条件下,第一应力期结束后的地下水排泄量(a)、建墙后的地下水排海通量(b)和相对排泄量(c)的等值线图

    Figure 9. 

    图 10  海水温度为35 °C(a)和30 °C(b)时,不同地下水温度条件下海水入侵阶段地下水排泄量(Q0)的变化

    Figure 10. 

    表 1  模拟参数[9, 20, 23]

    Table 1.  Parameter values

    模型参数
    参数取值 单位
    含水层厚度(H 50 m
    含水层长度(L 400 m
    有效孔隙度(n 0.4
    水力梯度(dh/dL 4.0
    淡水质量浓度(Cf 0 g/L
    咸水质量浓度(Cs 35 g/L
    渗透率(ks 2×10−11 m2
    纵向弥散度(αL 1.00 m
    横向弥散度(αT 0.1×αL m
    多孔介质导热系数(λ 0.6 J/(m·°C·s)
    流体导热系数(λp 3.5 J/(m·°C·s)
    固体骨架比热容(cp,p 4182 J/(kg·°C)
    流体比热容(cp 840 J/(kg·°C)
    固体骨架密度(ρp 2650 kg/m3
    下载: 导出CSV
  • [1]

    ALLOW K A. The use of injection wells and a subsurface barrier in the prevention of seawater intrusion:A modelling approach[J]. Arabian Journal of Geosciences,2012,5(5):1151 − 1161. doi: 10.1007/s12517-011-0304-9

    [2]

    THOMAS B F,FAMIGLIETTI J S. Identifying climate-induced groundwater depletion in GRACE observations[J]. Scientific Reports,2019,9(1):4124. doi: 10.1038/s41598-019-40155-y

    [3]

    KETABCHI H,MAHMOODZADEH D,ATAIE-ASHTIANI B,et al. Sea-level rise impacts on seawater intrusion in coastal aquifers:Review and integration[J]. Journal of Hydrology,2016,535:235 − 255. doi: 10.1016/j.jhydrol.2016.01.083

    [4]

    MELET A,MEYSSIGNAC B,ALMAR R,et al. Under-estimated wave contribution to coastal sea-level rise[J]. Nature Climate Change,2018,8(3):234 − 239. doi: 10.1038/s41558-018-0088-y

    [5]

    LUYUN R,MOMII K,NAKAGAWA K. Laboratory-scale saltwater behavior due to subsurface cutoff wall[J]. Journal of Hydrology,2009,377(3/4):227 − 236.

    [6]

    ISHIDA S,KOTOKU M,ABE E,et al. Construction of subsurface dams and their impact on the environment[J]. RMZ/Materials and Geoenvironment,2003(1):50.

    [7]

    KIM J T,CHOO C O,KIM M I,et al. Validity evaluation of a groundwater dam in Oshipcheon River,eastern Korea using a SWAT–MODFLOW model[J]. Environmental Earth Sciences,2017,76(22):769. doi: 10.1007/s12665-017-7085-8

    [8]

    SUN Qiguo,ZHENG Tianyuan,ZHENG Xilai,et al. Effectiveness and comparison of physical barriers on seawater intrusion and nitrate accumulation in upstream aquifers[J]. Journal of Contaminant Hydrology,2021,243:103913. doi: 10.1016/j.jconhyd.2021.103913

    [9]

    ISHIDA S,TSUCHIHARA T,YOSHIMOTO S,et al. Sustainable use of groundwater with underground dams[J]. Japan Agricultural Research Quarterly,2011,45(1):51 − 61. doi: 10.6090/jarq.45.51

    [10]

    NAWA N,MIYAZAKI K. The analysis of saltwater intrusion through Komesu underground dam and water quality management for salinity[J]. Paddy and Water Environment,2009,7(2):71 − 82. doi: 10.1007/s10333-009-0154-1

    [11]

    SENTHILKUMAR M,ELANGO L. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin,southern India[J]. Hydrogeology Journal,2011,19(4):917 − 928. doi: 10.1007/s10040-011-0735-0

    [12]

    邢万里,陈小刚,杜金洲. 基于镭同位素示踪的嵊泗高场湾海底地下水排放[J]. 海洋环境科学,2019,38(6):817 − 824. [XING Wanli,CHEN Xiaogang,DU Jinzhou. Using radium isotopes to estimate SGD flux in Gaochang bay,Shengsi[J]. Marine Environmental Science,2019,38(6):817 − 824. (in Chinese with English abstract)] doi: 10.12111/j.mes20190601

    XING Wanli, CHEN Xiaogang, DU Jinzhou. Using radium isotopes to estimate SGD flux in Gaochang bay, Shengsi[J]. Marine Environmental Science, 2019, 38(6): 817 − 824. (in Chinese with English abstract) doi: 10.12111/j.mes20190601

    [13]

    MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science,2010,2(1):59 − 88. doi: 10.1146/annurev-marine-120308-081019

    [14]

    张成成. 镭同位素评估辽东湾海底地下水排泄及其携带营养盐通量[D]. 北京:中国地质大学(北京),2018. [ZHANG Chengcheng. Estimating submarine groundwater discharge and associated nutrient fluxes into Liaodong Bay using radium isotopes[D]. Beijing:China University of Geosciences (Beijing),2018. (in Chinese with English abstract)]

    ZHANG Chengcheng. Estimating submarine groundwater discharge and associated nutrient fluxes into Liaodong Bay using radium isotopes[D]. Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract)

    [15]

    WANG Xuejing,LI Hailong,JIAO Jiu Jimmy,et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports,2015,5(1):8814. doi: 10.1038/srep08814

    [16]

    CHANG Qinpeng,ZHENG Tianyuan,ZHENG Xilai,et al. Effect of subsurface dams on saltwater intrusion and fresh groundwater discharge[J]. Journal of Hydrology,2019,576:508 − 519. doi: 10.1016/j.jhydrol.2019.06.060

    [17]

    ZHANG Jiaxu,LU Chunhui,SHEN Chengji,et al. Flow and transport in coastal aquifer-aquitard systems:Experimental and numerical analysis[J]. Water Resources Research,2024,60(4):e2023WR035200. doi: 10.1029/2023WR035200

    [18]

    ZHANG Jiaxu,LU Chunhui,ZHANG Chenming. Dense contaminants mixing into the saltwater wedge in coastal aquifers:Laboratory and numerical investigations[J]. Water Resources Research,2024,60(7):e2024WR037452. doi: 10.1029/2024WR037452

    [19]

    CANTALICE JOS EACUTE R B,VICTOR C P,VIJAY P S,et al. Hydrology and water quality of a underground dam in a semiarid watershed[J]. African Journal of Agricultural Research,2016,11(28):2508 − 2518. doi: 10.5897/AJAR2016.11163

    [20]

    CHANG Qinpeng,ZHENG Tianyuan,CHEN Youyuan,et al. Investigation of the elevation of saltwater wedge due to subsurface dams[J]. Hydrological Processes,2020,34(22):4251 − 4261. doi: 10.1002/hyp.13863

    [21]

    BENZ S A,BAYER P,BLUM P. Global patterns of shallow groundwater temperatures[J]. Environmental Research Letters,2017,12(3):034005. doi: 10.1088/1748-9326/aa5fb0

    [22]

    NGUYEN T T M,YU Xiayang,PU Li,et al. Effects of temperature on tidally influenced coastal unconfined aquifers[J]. Water Resources Research,2020,56(4):e2019WR026660. doi: 10.1029/2019WR026660

    [23]

    LOCARNINI M M,MISHONOV A V,BARANOVA O K,et al. World Ocean Atlas 2018,Volume 1:Temperature[M]. [S.l.]:NOAA Atlas NESDIS 81,2018:52.

    [24]

    OUDE ESSINK G H P. Improving fresh groundwater supply—Problems and solutions[J]. Ocean & Coastal Management,2001,44(5/6):429 − 449.

    [25]

    PU Li,XIN Pei,NGUYEN T T M,et al. Thermal effects on flow and salinity distributions in coastal confined aquifers[J]. Water Resources Research,2020,56(10):e2020WR027582. doi: 10.1029/2020WR027582

    [26]

    杨辉瑜,郑西来,郑天元,等. 海水入侵含水层的非等温过程数值模拟研究[J]. 工程勘察,2022,50(12):39 − 46. [YANG Huiyu,ZHENG Xilai,ZHENG Tianyuan,et al. Numerical simulation of nonisothermal process of seawater intrusion in coastal aquifer[J]. Geotechnical Investigation & Surveying,2022,50(12):39 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1433.2022.12.gckc202212008

    YANG Huiyu, ZHENG Xilai, ZHENG Tianyuan, et al. Numerical simulation of nonisothermal process of seawater intrusion in coastal aquifer[J]. Geotechnical Investigation & Surveying, 2022, 50(12): 39 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1433.2022.12.gckc202212008

    [27]

    JAMSHIDZADEH Z,TSAI F T C,AHMAD MIRBAGHERI S,et al. Fluid dispersion effects on density-driven thermohaline flow and transport in porous media[J]. Advances in Water Resources,2013,61:12 − 28. doi: 10.1016/j.advwatres.2013.08.006

    [28]

    高明鹏,郑西来,郑天元,等. 截渗墙作用下滨海地下水渗流与排泄特征[J]. 中国海洋大学学报(自然科学版),2022,52(4):111 − 119. [GAO Mingpeng,ZHENG Xilai,ZHENG Tianyuan,et al. Seepage and discharge characteristics of coastal groundwater under the action of the cutoff wall[J]. Periodical of Ocean University of China(Science & Technology Edition),2022,52(4):111 − 119. (in Chinese with English abstract)]

    GAO Mingpeng, ZHENG Xilai, ZHENG Tianyuan, et al. Seepage and discharge characteristics of coastal groundwater under the action of the cutoff wall[J]. Periodical of Ocean University of China(Science & Technology Edition), 2022, 52(4): 111 − 119. (in Chinese with English abstract)

  • 加载中

(10)

(1)

计量
  • 文章访问数:  306
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2024-08-21
修回日期:  2024-09-24
刊出日期:  2025-01-15

目录