砂质海岸地下水营养盐迁移转化过程与入海排泄

王学静, 郭祎钒, 于胜超, 汪迁迁, 李海龙, 郑春苗. 砂质海岸地下水营养盐迁移转化过程与入海排泄[J]. 水文地质工程地质, 2025, 52(1): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202409063
引用本文: 王学静, 郭祎钒, 于胜超, 汪迁迁, 李海龙, 郑春苗. 砂质海岸地下水营养盐迁移转化过程与入海排泄[J]. 水文地质工程地质, 2025, 52(1): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202409063
WANG Xuejing, GUO Yifan, YU Shengchao, WANG Qianqian, LI Hailong, ZHENG Chunmiao. Nutrient dynamics and discharge in a coastal sandy beach aquifer[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202409063
Citation: WANG Xuejing, GUO Yifan, YU Shengchao, WANG Qianqian, LI Hailong, ZHENG Chunmiao. Nutrient dynamics and discharge in a coastal sandy beach aquifer[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202409063

砂质海岸地下水营养盐迁移转化过程与入海排泄

  • 基金项目: 国家自然科学基金项目(42077173;41890852;42107055)
详细信息
    作者简介: 王学静(1986—),男,博士,副教授,博士生导师,主要从事海岸带地下水研究。E-mail:wangxj3@tju.edu.cn
  • 中图分类号: P641.2

Nutrient dynamics and discharge in a coastal sandy beach aquifer

More Information
    Author Bio: 王学静,天津大学地球系统科学学院“北洋学者”英才副教授(特聘研究员),博士生导师,中国同位素水文学委员会(CCT)委员,全国研究生教育评估监测专家。Regional Studies in Marine ScienceFrontiers in Water 特邀编委,Discover Oceans、《中国地质调查》编委;Water Resources ResearchWater ResearchHydrology and Earth System Sciences等20多个SCI期刊审稿人。  长期致力于海岸带海底地下水排泄(SGD)及其环境效应研究,构建和发展了SGD示踪方法体系,评估了我国重要海岸SGD及其携带物质入海通量,阐释了SGD的潜在环境效应。主持国家自然科学基金面上项目(2项)、重大项目子课题、青年基金以及深圳市自然科学基金等科研项目10项;作为研究骨干参加国家自然科学基金重点项目(2项)、科技部重点研发计划课题(2项)以及深圳市基础研究重点项目等10项。发表期刊论文近70篇,在Water Resources ResearchGeochimica et Cosmochimica ActaGeophysical Research LettersJournal of Hydrology等国际地学主流期刊发表SCI论文60篇,论文总被引1500余次,获授权国家专利2项。获南方科技大学校长卓越博士后(2016)、深圳市高层次人才(2018)、大禹水利科技进步二等奖(2022)、天津市海河英才(2023) .
  • 正确认识营养物质在地下咸淡水过渡带的行为,准确量化营养物质通过地下水的入海输入量,对近岸海域生态环境保护与治理具有重要意义。文章以广东北津湾砂质海滩为研究对象,通过对海滩地下水分层取样与测试分析,揭示海滩地下水营养盐分布特征与迁移转化规律,评估海底地下水排泄(submarine groundwater discharge,SGD)及其携带营养盐入海通量,阐释潜在环境影响。研究结果表明:(1)与地表水相比,海滩地下水具有较高的营养盐含量,地下水中硝酸盐+亚硝酸盐($ {\mathrm{N}\mathrm{O}}_{{x}}^{-} $)、磷酸盐($ {\mathrm{P}\mathrm{O}}_{4}^{3-} $)和硅(Si)浓度由陆向海、从浅层到深层逐渐降低,经过咸淡水过渡带后$ {\mathrm{N}\mathrm{O}}_{{x}}^{-} $和$ {\mathrm{P}\mathrm{O}}_{4}^{3-} $发生了非保守移除;$ {\mathrm{N}\mathrm{O}}_{{x}}^{-} $主要通过反硝化作用进行脱氮,从陆向海其浓度衰减了95.81%;而$ {\mathrm{P}\mathrm{O}}_{4}^{3-} $主要是被铁的氧化物/氢氧化物终产物吸附去除;海滩中部地下水中产生了氨氮($ {\mathrm{N}\mathrm{H}}_{4}^{+} $)热区,$ {\mathrm{N}\mathrm{H}}_{4}^{+} $发生了非保守增加,主要是有机物分解释放。(2)整个海湾SGD值为1.49×106 m3/d,与当地河流入海量相当;SGD携带输入的溶解无机氮、$ {\mathrm{P}\mathrm{O}}_{4}^{3-} $和Si分别为983.0,37.00,4023 kg/d,是海洋营养盐的重要来源之一。(3)海滩地下水具有较高的氮磷比(平均值139.6)和硅磷比(平均值274.1),远高于Redfiled比及海水的氮磷比(21.03)和硅磷比(33.12),影响海湾营养盐组成与结构。砂质海滩广泛分布,研究结果可为该类型海域生态环境的管理提供科学依据。

  • 加载中
  • 图 1  研究区及监测-取样剖面图

    Figure 1. 

    图 2  地下水(W4和W5)水位和海潮变化

    Figure 2. 

    图 3  地下水理化参数(盐度、TDS、ORP、pH)等值线图

    Figure 3. 

    图 4  地下水、海水和养殖废水的营养盐质量浓度

    Figure 4. 

    图 5  地下水营养盐浓度等值线图

    Figure 5. 

    图 6  地下水物理化学参数及营养盐之间相关性

    Figure 6. 

    图 7  营养盐浓度-TDS关系图

    Figure 7. 

    图 8  地下水营养盐浓度异常值

    Figure 8. 

    图 9  地下水、海水和养殖废水营养盐比率

    Figure 9. 

    表 1  取样信息及样品物理化学参数

    Table 1.  Sampling information and physicochemical parameter values of all water samples

    取样编号 高程/m 盐度/‰ ρ(TDS)
    /(g·L−1
    ORP/mV pH ρ$ {\mathrm{N}\mathrm{O}}_{{x}}^{-} $ ρ$ {\mathrm{N}\mathrm{H}}_{4}^{+} $ ρ$\mathrm{P}\mathrm{O}_4^{3-} $ ρ(Si)
    /(μg·L−1
    W1-1 8.62 28.27 21.96 −5.5 7.65 580.74 2.99 31.10 2519.79
    W1-2 7.62 27.99 21.77 −20.1 7.58 616.18 24.72 26.14 2384.81
    W1-3 6.62 22.36 17.79 −25.3 7.76 392.93 3043.00
    W1-4 5.62 23.56 28.64 −33.1 7.72 3.15 907.86 22.57 4810.03
    W1-5 4.62 17.17 34.34 −31.9 7.95 28.93 2230.76 30.19 4620.44
    W1-8 1.62 18.88 37.74 −31.7 7.99 65.99 185.08 97.84 3279.20
    W1-12 −1.38 8.94 17.87 −19.7 7.74 4.31 352.48 15.74 7290.78
    W2-3 6.91 21.58 43.16 −9.9 7.75 547.17 31.98 2282.78
    W2-7 2.91 7.21 14.48 −8.4 7.92 0.51 838.67 24.12 5623.41
    W3-2 8.57 28.40 22.04 −9.4 7.86 432.42 0.75 70.67 2443.56
    W3-3 7.57 28.43 22.06 −12.9 7.80 701.43 1.46 26.44 3078.02
    W3-4 6.57 19.15 15.44 −8.3 7.91 463.60 60.89 5535.64
    W3-5 5.57 24.42 19.26 0.2 7.70 4.17 674.05 90.66 5375.68
    W3-6 4.57 8.65 7.46 0.4 7.58 52.19 1241.81 18.91 6273.10
    W3-7 3.57 4.85 4.37 −3.4 7.88 1.19 981.63 12.57 5505.43
    W3-9 1.57 2.70 2.53 1.8 8.42 3.42 377.18 16.18 5984.33
    W3-13 −0.44 6.44 5.71 −7.8 7.75 13.75 204.58 11.99 9384.45
    W4-4 7.26 11.92 10.05 −6.1 7.80 165.54 27.83 5655.45
    W4-5 6.26 22.78 18.06 −9.4 7.69 1.11 561.69 78.57 5767.93
    W4-6 5.26 10.26 8.72 −5.3 7.55 31.60 1623.57 21.34 5954.41
    W4-7 4.26 15.21 12.52 −20.4 7.45 1260.15 5671.47
    W4-9 3.26 8.17 7.14 −18.9 7.62 0.96 688.94 17.12 5512.57
    W4-12 0.26 11.98 10.07 −17.9 7.46 7.85 708.47 7725.08
    W5-3 7.72 0.13 0.14 80.6 8.47 6891.71 152.95 4324.70
    W5-4 6.72 4.05 3.68 59.2 8.52 319.18 111.57 5453.36
    W5-5 5.72 20.71 16.60 17.7 7.83 2.68 1009.61 42.64 5207.73
    W5-6 4.72 15.39 12.71 8.4 7.72 17.38 2726.95 166.79 7193.67
    W5-8 2.72 2.97 2.73 18.4 8.07 2.16 536.17 13.55 6684.23
    W5-9 2.22 1.89 1.80 8.5 7.72 17.48 404.56 11.00 7219.87
    W6 6.87 0.44 0.90 10.9 8.36 6157.04 205.83 6.94 5840.88
    海水 21.29 42.56 −12.0 7.70 258.25 510.42 80.79 2420.30
    养殖废水 19.89 39.76 −17.7 7.72 828.09 982.78 229.51 1571.58
      注:—代表无数据或者未检测出;ρ为质量浓度。
    下载: 导出CSV
  • [1]

    WARD N D,MEGONIGAL J P,BOND-LAMBERTY B,et al. Representing the function and sensitivity of coastal interfaces in Earth system models[J]. Nature Communications,2020,11(1):2458. doi: 10.1038/s41467-020-16236-2

    [2]

    MOHANTY A K,RAO V V S G. Hydrogeochemical,seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha,India[J]. Catena,2019,172:558 − 571. doi: 10.1016/j.catena.2018.09.010

    [3]

    崔相飞,周训,徐中平,等. 海岸带咸淡水界面的研究进展[J]. 水文地质工程地质,2018,45(2):29 − 35. [CUI Xiangfei,ZHOU Xun,XU Zhongping,et al. Advances in research on the fresh water-salt water interface in coastal zones[J]. Hydrogeology & Engineering Geology,2018,45(2):29 − 35. (in Chinese with English abstract)]

    CUI Xiangfei, ZHOU Xun, XU Zhongping, et al. Advances in research on the fresh water-salt water interface in coastal zones[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 29 − 35. (in Chinese with English abstract)

    [4]

    任加国,武倩倩. 咸淡水驱替过程中的水文地球化学作用[J]. 海洋地质与第四纪地质,2008,28(5):55 − 60. [REN Jiaguo,WU Qianqian. Hydrogeochemistry in the process of salt water-freshwater displacement[J]. Marine Geology & Quaternary Geology,2008,28(5):55 − 60. (in Chinese with English abstract)]

    REN Jiaguo, WU Qianqian. Hydrogeochemistry in the process of salt water-freshwater displacement[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 55 − 60. (in Chinese with English abstract)

    [5]

    HEISS J W,MICHAEL H A,KONESHLOO M. Denitrification hotspots in intertidal mixing zones linked to geologic heterogeneity[J]. Environmental Research Letters,2020,15(8):084015. doi: 10.1088/1748-9326/ab90a6

    [6]

    HU Yuansheng,WU Guangxue,LI Ruihua,et al. Iron sulphides mediated autotrophic denitrification:An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research,2020,179:115914. doi: 10.1016/j.watres.2020.115914

    [7]

    郭华明,高志鹏,修伟. 地下水氮循环与砷迁移转化耦合的研究现状和趋势[J]. 水文地质工程地质,2022,49(3):153 − 163. [GUO Huaming,GAO Zhipeng,XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology,2022,49(3):153 − 163. (in Chinese with English abstract)]

    GUO Huaming, GAO Zhipeng, XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153 − 163. (in Chinese with English abstract)

    [8]

    肖凯. 滨海湿地潮间带氮循环及大孔隙优先流机制研究[D]. 北京:中国地质大学(北京),2018. [XIAO Kai. Nitrogen cycle and hydrodynamics of macropores as preferential flow conduits in the intertidal zone of coastal wetlands[D].Beijing: China University of Geosciences (Beijing),2018. (in Chinese with English abstract)]

    XIAO Kai. Nitrogen cycle and hydrodynamics of macropores as preferential flow conduits in the intertidal zone of coastal wetlands[D].Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract)

    [9]

    WANG Shanyun,WANG Weidong,ZHAO Siyan,et al. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones[J]. Water Research,2019,162:139 − 150. doi: 10.1016/j.watres.2019.06.052

    [10]

    SPITERI C,SLOMP C P,TUNCAY K,et al. Modeling biogeochemical processes in subterranean estuaries:Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients[J]. Water Resources Research,2008,44(2):423 − 440.

    [11]

    张艳,王学静,薛岩,等. 中国近岸海底地下水排泄(SGD)研究进展[J]. 中国科学:地球科学,2022,52(11):2139 − 2151. [ZHANG Yan,WANG Xuejing,XUE Yan,et al. Advances in the study of submarine groundwater (SGD) in China[J]. Scientia Sinica (Terrae),2022,52(11):2139 − 2151. (in Chinese with English abstract)]

    ZHANG Yan, WANG Xuejing, XUE Yan, et al. Advances in the study of submarine groundwater (SGD) in China[J]. Scientia Sinica (Terrae), 2022, 52(11): 2139 − 2151. (in Chinese with English abstract)

    [12]

    ZHANG Yan,SANTOS I R,LI Hailong,et al. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales[J]. Geochimica et Cosmochimica Acta,2020,290:201 − 215. doi: 10.1016/j.gca.2020.08.026

    [13]

    吴自军,王富康,崔振昂,等. 基于近岸系列分层竖井的海底地下水排泄及其营养盐输入研究[J]. 同济大学学报(自然科学版),2021,49(3):449 − 457. [WU Zijun,WANG Fukang,CUI Zhen’ang,et al. Submarine groundwater discharge and dependent nutrient input based on a series of layered monitoring wells[J]. Journal of Tongji University (Natural Science),2021,49(3):449 − 457. (in Chinese with English abstract)]

    WU Zijun, WANG Fukang, CUI Zhen’ang, et al. Submarine groundwater discharge and dependent nutrient input based on a series of layered monitoring wells[J]. Journal of Tongji University (Natural Science), 2021, 49(3): 449 − 457. (in Chinese with English abstract)

    [14]

    叶玉玲,廖小青,刘贯群. 国内外地下水入海通量研究现状与趋势[J]. 水文地质工程地质,2006,33(6):124 − 128. [YE Yuling,LIAO Xiaoqing,LIU Guanqun. A review of submarine groundwater discharge home and abroad[J]. Hydrogeology & Engineering Geology,2006,33(6):124 − 128. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2006.06.031

    YE Yuling, LIAO Xiaoqing, LIU Guanqun. A review of submarine groundwater discharge home and abroad[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 124 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.06.031

    [15]

    BURNETT W C,AGGARWAL P K,AURELI A,et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment,2006,367(2-3):498 − 543. doi: 10.1016/j.scitotenv.2006.05.009

    [16]

    黄小平,张景平,江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展,2015,30(9):961 − 969. [HUANG Xiaoping,ZHANG Jingping,JIANG Zhijian. Eco-environmental effects of nutrients input caused by human activities on the semi-enclosed bay and its management strategy[J]. Advances in Earth Science,2015,30(9):961 − 969. (in Chinese with English abstract)]

    HUANG Xiaoping, ZHANG Jingping, JIANG Zhijian. Eco-environmental effects of nutrients input caused by human activities on the semi-enclosed bay and its management strategy[J]. Advances in Earth Science, 2015, 30(9): 961 − 969. (in Chinese with English abstract)

    [17]

    SANTOS I R,CHEN Xiaogang,LECHER A L,et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews Earth & Environment,2021,2(5):307 − 323.

    [18]

    COUTURIER M,TOMMI-MORIN G,SIROIS M,et al. Nitrogen transformations along a shallow subterranean estuary[J]. Biogeosciences,2017,14(13):3321 − 3336. doi: 10.5194/bg-14-3321-2017

    [19]

    LIU Yi,LIANG Wenzhao,JIAO Jiujiu. Seasonality of nutrient flux and biogeochemistry in an intertidal aquifer[J]. Journal of Geophysical Research-Oceans,2018,123(9):6116 − 6135. doi: 10.1029/2018JC014197

    [20]

    王志秀,李亚松,郝奇琛,等. 基于盐度动态模拟估算潮间带地下淡水排泄量[J]. 水文地质工程地质,2024,51(5):56 − 67. [WANG Zhixiu,LI Yasong,HAO Qichen,et al. Submarine fresh groundwater discharge estimation in the intertidal zone based on dynamic salinity simulation[J]. Hydrogeology & Engineering Geology,2024,51(5):56 − 67. (in Chinese with English abstract)]

    WANG Zhixiu, LI Yasong, HAO Qichen, et al. Submarine fresh groundwater discharge estimation in the intertidal zone based on dynamic salinity simulation[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 56 − 67. (in Chinese with English abstract)

    [21]

    WANG Zhenyan,WANG Qianqian,GUO Yifan,et al. Seawater–groundwater interaction governs trace metal zonation in a coastal sandy aquifer[J]. Water Resources Research,2023,59(9):e2022WR032828. doi: 10.1029/2022WR032828

    [22]

    GENG Xiaolong,HEISS J W,MICHAEL H A,et al. Geochemical fluxes in sandy beach aquifers:Modulation due to major physical stressors,geologic heterogeneity,and nearshore morphology[J]. Earth-Science Reviews,2021,221:103800. doi: 10.1016/j.earscirev.2021.103800

    [23]

    ZHANG,Yan,GUO Yifan,WANG Junjian,et al. Dissolved carbon dynamics and exchange in a high permeability beach aquifer[J]. Geochimica et Cosmochimica Acta,2024,368:64 − 75. doi: 10.1016/j.gca.2024.01.014

    [24]

    ZHANG Caixia,YIN Kedong,SHI Xiaoran,et al. Risk assessment for typhoon storm surges using geospatial techniques for the coastal areas of Guangdong,China[J]. Ocean & Coastal Management,2021,213:105880.

    [25]

    LUO Xin,KWOK K L,LIU Yi,et al. A permanent multilevel monitoring and sampling system in the coastal groundwater mixing zones[J]. Groundwater,2017,55(4):577 − 587. doi: 10.1111/gwat.12510

    [26]

    WANG Hua,WU Xia,LAN Gaoyong,et al. High precision measurement of hydrogen,oxygen and dissolve inorganic carbon isotope in water samples by GasBench II-IRMS:An interlaboratory comparison study[J]. Acta Geologica Sinica,2015,89(10):1804 − 1813.

    [27]

    O’CONNOR A E,KRASK J L,CANUEL E A,et al. Seasonality of major redox constituents in a shallow subterranean estuary[J]. Geochimica et Cosmochimica Acta,2018,224:344 − 361. doi: 10.1016/j.gca.2017.10.013

    [28]

    BOWEN G J,CAI Z Y,FIORELLA R P,et al. Isotopes in the water cycle:Regional-to Global-Scale Patterns and Applications[J]. Annual Review of Earth and Planetary Sciences,2019,47(1):453 − 479. doi: 10.1146/annurev-earth-053018-060220

    [29]

    SANTOS I R,BURNETT W C,CHANTON J,et al. Land or ocean?:Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico[J]. Journal of Geophysical Research:Oceans,2009,114(C4):2008JC005038. doi: 10.1029/2008JC005038

    [30]

    ROBINSON C,LI L,BARRY D A. Effect of tidal forcing on a subterranean estuary[J]. Advances in Water Resources,2007,30(4):851 − 865. doi: 10.1016/j.advwatres.2006.07.006

    [31]

    MOORE W S. The Effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science,2010,2:59 − 88. doi: 10.1146/annurev-marine-120308-081019

    [32]

    STAL L J,BEHRENS S B,VILLBRANDT M,et al. The biogeochemistry of two eutrophic marine lagoons and its effect on microphytobenthic communities[J]. Hydrobiologia,1996,329:185 − 198. doi: 10.1007/BF00034557

    [33]

    JUSTI D,RABALAIS N N,TURNER R E. Stoichiometric nutrient balance and origin of coastal eutrophication[J]. Marine Pollution Bulletin,1995,30(1):41 − 46. doi: 10.1016/0025-326X(94)00105-I

  • 加载中

(9)

(1)

计量
  • 文章访问数:  179
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2024-09-25
修回日期:  2024-10-30
刊出日期:  2025-01-15

目录