淮北平原浅层地下水化学特征及水质动态研究

朱春芳, 龚建师, 檀梦皎, 陶小虎, 周锴锷, 王赫生, 李亮, 秦曦. 淮北平原浅层地下水化学特征及水质动态研究[J]. 水文地质工程地质, 2025, 52(3): 56-67. doi: 10.16030/j.cnki.issn.1000-3665.202409072
引用本文: 朱春芳, 龚建师, 檀梦皎, 陶小虎, 周锴锷, 王赫生, 李亮, 秦曦. 淮北平原浅层地下水化学特征及水质动态研究[J]. 水文地质工程地质, 2025, 52(3): 56-67. doi: 10.16030/j.cnki.issn.1000-3665.202409072
ZHU Chunfang, GONG Jianshi, TAN Mengjiao, TAO Xiaohu, ZHOU Kaie, WANG Hesheng, LI Liang, QIN Xi. Hydrochemical characteristics and water quality dynamic analysis of shallow groundwater in Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 56-67. doi: 10.16030/j.cnki.issn.1000-3665.202409072
Citation: ZHU Chunfang, GONG Jianshi, TAN Mengjiao, TAO Xiaohu, ZHOU Kaie, WANG Hesheng, LI Liang, QIN Xi. Hydrochemical characteristics and water quality dynamic analysis of shallow groundwater in Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 56-67. doi: 10.16030/j.cnki.issn.1000-3665.202409072

淮北平原浅层地下水化学特征及水质动态研究

  • 基金项目: 中国地质调查局地质调查项目(DD20230079)
详细信息
    作者简介: 朱春芳(1982—),女,硕士,高级工程师,主要从事水工环地质调查研究工作。E-mail:275677116@qq.com
    通讯作者: 龚建师(1979—),男,本科,正高级工程师,主要从事水工环地质调查研究工作。E-mail: janso101@163.com
  • 中图分类号: P641.3

Hydrochemical characteristics and water quality dynamic analysis of shallow groundwater in Huaibei Plain

More Information
  • 浅层地下水是淮北平原最重要的农业用水供水水源,水质状况广受关注。文章采用数理统计、舒卡列夫分类、Piper三线图和水质综合评价得出淮北平原浅层地下水化学特征及水质现状,运用Gibbs图和离子比值关系分析了水化学物质来源,应用主成分分析法筛选影响地下水质量的典型因子并推演时空演变规律。结果表明:淮北平原浅层地下水多为弱碱性淡水,pH值6.6~8.6,溶解性总固体192~5302 mg/L,主要水化学类型共8类,主要阴离子为${\mathrm{HCO}}_3^- $,阳离子为Na+、Ca2+,地下水质量以Ⅳ类水为主;水岩作用主要受硅酸盐岩-碳酸盐岩岩石风化作用影响,从上游淮北平原到中游淮北平原,岩石风化溶解的水岩作用由碳酸盐岩向硅酸盐岩再向蒸发盐岩演化。通过主成分分析选取溶解性总固体、耗氧量、硝酸盐作为典型因子研究水质动态演化规律,淮北平原浅层地下水质量在2010—2021年经历了明显好转后略有下降,但典型因子的表现不尽相同;受原生地质环境影响,淮北平原浅层地下水可溶物质总量趋向于面状集中分布,高值点增多且大多分布于中游淮北平原,氧化还原条件从还原环境向氧化环境演变,2010—2018年农业活动等人为污染在上游淮北平原局部加重,但在2018年后得到明显改善。研究结果可为淮北平原浅层地下水污染防治、地下水资源保护提供支撑。

  • 加载中
  • 图 1  淮北平原浅层地下水采样点分布图

    Figure 1. 

    图 2  淮北平原水文地质剖面图

    Figure 2. 

    图 3  淮北平原浅层地下水Piper三线图

    Figure 3. 

    图 4  淮北平原浅层地下水水化学类型分区图

    Figure 4. 

    图 5  淮北平原浅层地下水适用于集中式生活饮用水水源及工农业用水比例变化图

    Figure 5. 

    图 6  淮北平原地下水质量综合评价分区图

    Figure 6. 

    图 7  淮北平原浅层地下水Gibbs图

    Figure 7. 

    图 8  淮北平原${\mathrm{HCO}}_3^- $/ Na+、Mg2+/Na+ 与Ca2+/Na+离子浓度比值关系

    Figure 8. 

    图 9  淮北平原浅层地下水溶解性总固体分区图

    Figure 9. 

    图 10  淮北平原浅层地下水耗氧量质量浓度分区图

    Figure 10. 

    图 11  淮北平原浅层地下水硝酸盐质量浓度分区图

    Figure 11. 

    表 1  样品水化学特征

    Table 1.  Statistics of major ions in groundwater

    项目 pH值 总硬度
    /(mg·L−1
    溶解性总固体
    /(mg·L−1
    质量浓度(ρ)/(mg·L−1
    Ca2+ Mg2+ K+ Na+ ${\mathrm{SO}}_4^{2- } $ Cl ${\mathrm{HCO}}_3^- $ ${\mathrm{NO}}^-_3 $ F I Mn
    平均值 7.61 411 798 84.5 48.8 1.5 131.9 138.0 102.4 489.2 3.4 0.86 0.04 0.37
    中位值 7.60 362 596 77.6 38.5 0.7 70.0 64.7 52.8 457.0 0.4 0.72 0 0.26
    最小值 6.60 70 192 14.7 6.0 0.04 7.9 0.16 1.8 13.9 0.06 0.002
    最大值 8.61 2481 5302 280.6 432.7 67.4 984.4 1911.1 1546.3 1305.8 63.1 5.00 0.93 2.68
    标准差 0.34 232 672 40.3 43.0 4.7 163.1 236.4 156.9 191.0 6.8 0.63 0.11 0.36
    变异系数 0.04 0.56 0.84 0.65 0.99 3.06 1.24 1.71 1.53 0.39 1.98 0.74 2.59 0.97
      注:—表示未检出。
    下载: 导出CSV

    表 2  特征值、主成分贡献率及累计贡献值

    Table 2.  Eigenvalues, contribution rate, and cumulative contribution rate of the principal components

    成分 初始特征值 提取载荷平方和
    总计 方差百分比/% 累积/% 总计 方差百分比/% 累积/%
    1 4.676 29.222 29.222 4.676 29.222 29.222
    2 2.009 12.557 41.780 2.009 12.557 41.780
    3 1.760 10.997 52.777 1.760 10.997 52.777
    4 1.436 8.975 61.752 1.436 8.975 61.752
    5 1.292 8.074 69.825 1.292 8.074 69.825
    6 1.069 6.680 76.506 1.069 6.680 76.506
    7 0.962 6.016 82.521
    8 0.849 5.308 87.829
    9 0.591 3.693 91.522
    10 0.409 2.556 94.078
    11 0.323 2.021 96.099
    12 0.233 1.456 97.555
    13 0.159 0.993 98.548
    14 0.108 0.674 99.223
    15 0.096 0.603 99.825
    16 0.028 0.175 100.000
    下载: 导出CSV

    表 3  主成分因子载荷

    Table 3.  Various factors loading in principle components

    指标 主成分1 主成分2 主成分3 主成分4 主成分5 主成分6
    0.240 0.479 −0.002 0.449 −0.490 0.130
    总硬度 0.811 0.088 0.388 −0.046 −0.172 −0.043
    溶解性总固体 0.941 −0.096 0.049 −0.084 −0.019 0.015
    硫酸盐 0.930 −0.093 0.114 −0.081 −0.089 0.046
    氯化物 0.898 −0.050 0.132 −0.145 −0.169 0.036
    0.007 −0.109 0.128 0.092 0.426 0.258
    硝酸盐 −0.014 0.054 0.751 −0.101 0.202 0.090
    挥发性酚类 0.397 0.086 −0.141 0.684 0.378 0.059
    耗氧量 0.198 0.820 −0.082 −0.405 0.243 −0.011
    氨氮 0.055 0.422 −0.103 0.513 −0.071 0.616
    0.920 −0.178 −0.170 −0.085 0.074 0.025
    亚硝酸盐 0.032 0.785 0.062 −0.318 0.384 −0.065
    氟化物 0.483 −0.258 −0.548 −0.032 0.440 −0.003
    碘化物 0.217 0.185 −0.508 −0.324 −0.197 0.042
    0.084 0.359 −0.132 0.287 −0.244 −0.609
    0.259 0.039 0.166 0.336 0.354 −0.460
    下载: 导出CSV
  • [1]

    周仰效,李文鹏. 地下水水质监测与评价[J]. 水文地质工程地质,2008,35(1):1 − 11. [ZHOU Yangxiao,LI Wenpeng. Groundwater quality monitoring and assessment[J]. Hydrogeology & Engineering Geology,2008,35(1):1 − 11. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2008.01.002

    ZHOU Yangxiao, LI Wenpeng. Groundwater quality monitoring and assessment[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 1 − 11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.01.002

    [2]

    李圣品,李文鹏,殷秀兰,等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin,LI Wenpeng,YIN Xiulan,et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)]

    LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1 − 8. (in Chinese with English abstract)

    [3]

    水资源处. 淮河流域及山东半岛水资源公报(2021年度)[EB/OL]. (2022-09-30)[2024-01-14]. [Water Resources Branch. Huaihe River basin and Shandong peninsula water resources bulletin (2021)[EB/OL]. (2022-09-30)[2024-01-14]. http://www.hrc.gov.cn/main/szygb/675300.jhtml.(in Chinese)]

    Water Resources Branch. Huaihe River basin and Shandong peninsula water resources bulletin (2021)[EB/OL]. (2022-09-30)[2024-01-14]. http://www.hrc.gov.cn/main/szygb/675300.jhtml.(in Chinese)

    [4]

    HE Guang,FU Yiwen,ZHAO Shuhang. Evaluation of water ecological security in Huaihe River Basin based on the DPSIR-EESSMI-P model[J]. Water Supply,2023,23(3):1127 − 1143. doi: 10.2166/ws.2023.034

    [5]

    SUN Xiaomin,LIN Jin,GU Weizu,et al. Analysis and evaluation of the renewability of the deep groundwater in the Huaihe River Basin,China[J]. Environmental Earth Sciences,2021,80(3):104. doi: 10.1007/s12665-020-09355-y

    [6]

    翟晓燕,张永勇. 淮河流域水质时空分布及土地利用区域影响[J]. 水资源保护,2022,38(5):181 − 189. [ZHAI Xiaoyan,ZHANG Yongyong. Spatio-temporal variations of water quality indices and regional influences of land use types in the Huai River Basin[J]. Water Resources Protection,2022,38(5):181 − 189. (in Chinese with English abstract)] doi: 10.3880/j.issn.1004-6933.2022.05.024

    ZHAI Xiaoyan, ZHANG Yongyong. Spatio-temporal variations of water quality indices and regional influences of land use types in the Huai River Basin[J]. Water Resources Protection, 2022, 38(5): 181 − 189. (in Chinese with English abstract) doi: 10.3880/j.issn.1004-6933.2022.05.024

    [7]

    官娇娇,郑跃军,曹祥会. 我国地下水资源面临的问题及对策思考[J]. 华东地质,2024,45(3):255 − 263. [GUAN Jiaojiao,ZHENG Yuejun,CAO Xianghui. The problems faced by groundwater resources in China and countermeasures suggestion[J]. East China Geology,2024,45(3):255 − 263. (in Chinese with English abstract)]

    GUAN Jiaojiao, ZHENG Yuejun, CAO Xianghui. The problems faced by groundwater resources in China and countermeasures suggestion[J]. East China Geology, 2024, 45(3): 255 − 263. (in Chinese with English abstract)

    [8]

    叶念军,葛伟亚,龚建师,等. 淮河流域环境地质调查报告[R]. 南京:中国地质调查局南京地质调查中心,2012. [YE Nianjun,GE WeiYa,GONG Jianshi,et al. Environmental geological survey report in Huaihe River Basin[R]. Nanjing:Nanjing Center China Geological Survey,2012. (in Chinese)]

    YE Nianjun, GE WeiYa, GONG Jianshi, et al. Environmental geological survey report in Huaihe River Basin[R]. Nanjing: Nanjing Center China Geological Survey, 2012. (in Chinese)

    [9]

    龚建师,王赫生,李亮,等. 淮河流域地下水资源概况及开发潜力[J]. 中国地质,2021,48(4):1052 − 1061. [GONG Jianshi,WANG Hesheng,LI Liang,et al. Groundwater resources and development potential in Huaihe River Basin[J]. Geology in China,2021,48(4):1052 − 1061. (in Chinese with English abstract)] doi: 10.12029/gc20210405

    GONG Jianshi, WANG Hesheng, LI Liang, et al. Groundwater resources and development potential in Huaihe River Basin[J]. Geology in China, 2021, 48(4): 1052 − 1061. (in Chinese with English abstract) doi: 10.12029/gc20210405

    [10]

    龚建师,叶念军,葛伟亚,等. 淮河流域浅层地下水中Hg·As·Cr6+赋存特征及农业用水建议[J]. 安徽农业科学,2014,42(30):10698 − 10700. [GONG Jianshi,YE Nianjun,GE Weiya,et al. Hg,As,Cr6+ distribution characteristics in shallow groundwater of Huaihe Catchment and suggestions of groundwater utilization in agricultural area[J]. Journal of Anhui Agricultural Sciences,2014,42(30):10698 − 10700. (in Chinese with English abstract)] doi: 10.3969/j.issn.0517-6611.2014.30.094

    GONG Jianshi, YE Nianjun, GE Weiya, et al. Hg, As, Cr6+ distribution characteristics in shallow groundwater of Huaihe Catchment and suggestions of groundwater utilization in agricultural area[J]. Journal of Anhui Agricultural Sciences, 2014, 42(30): 10698 − 10700. (in Chinese with English abstract) doi: 10.3969/j.issn.0517-6611.2014.30.094

    [11]

    赵贵章,王淑丽,李志萍,等. 基于小波分析的水质变化及预测研究——以涡河为例[J]. 人民珠江,2022,43(2):79 − 87. [ZHAO Guizhang,WANG Shuli,LI Zhiping,et al. Research on water quality change and prediction based on wavelet analysis:A case study of Guohe river[J]. Pearl River,2022,43(2):79 − 87. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2022.02.011

    ZHAO Guizhang, WANG Shuli, LI Zhiping, et al. Research on water quality change and prediction based on wavelet analysis: A case study of Guohe river[J]. Pearl River, 2022, 43(2): 79 − 87. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2022.02.011

    [12]

    朱春芳,龚建师,周锴锷,等. 丰沛平原浅层地下水化学特征分析[J]. 地球与环境,2022,50(6):797 − 804. [ZHU Chunfang,GONG Jianshi,ZHOU Kaie,et al. Hydrochemical characteristics of shallow groundwater in Fengpei plain area[J]. Earth and Environment,2022,50(6):797 − 804. (in Chinese with English abstract)]

    ZHU Chunfang, GONG Jianshi, ZHOU Kaie, et al. Hydrochemical characteristics of shallow groundwater in Fengpei plain area[J]. Earth and Environment, 2022, 50(6): 797 − 804. (in Chinese with English abstract)

    [13]

    顾慰祖. 同位素水文学[M]. 北京:科学出版社,2011. [GU Weizu. Isotope hydrology[M]. Beijing:Science Press,2011. (in Chinese)]

    GU Weizu. Isotope hydrology[M]. Beijing: Science Press, 2011. (in Chinese)

    [14]

    葛伟亚,叶念军,龚建师,等. 淮河流域平原区地下水资源合理开发利用模式研究[J]. 地下水,2007,29(5):37 − 40. [GE Weiya,YE Nianjun,GONG Jianshi,et al. Rational development and utilization of groundwater resource in the plain of the Huaihe river basin[J]. Ground Water,2007,29(5):37 − 40. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-1184.2007.05.012

    GE Weiya, YE Nianjun, GONG Jianshi, et al. Rational development and utilization of groundwater resource in the plain of the Huaihe river basin[J]. Ground Water, 2007, 29(5): 37 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2007.05.012

    [15]

    XU Naizheng,ZHANG Fei,XU Naicen,et al. Chemical and mineralogical variability of sediment in a quaternary aquifer from Huaihe River Basin,China:Implications for groundwater arsenic source and its mobilization[J]. The Science of the Total Environment,2023,865:160864. doi: 10.1016/j.scitotenv.2022.160864

    [16]

    XU Naizheng,LEI Shi,TAO Xiaohu,et al. Exposure risk of groundwater arsenic contamination from Huaihe River Plain,China[J]. Emerging Contaminants,2022,8:310 − 317. doi: 10.1016/j.emcon.2022.06.004

    [17]

    龚建师,王赫生,朱春芳,等. 淮河流域地下水资源评价成果报告[R]. 南京:中国地质调查局南京地质调查中心,2023. [GONG Jianshi,WANG Hesheng,ZHU Chunfang,et al. Report of groundwater resources evaluation in Huaihe River Basin[R]. Nanjing:Nanjing Center China Geological Survey,2023. (in Chinese)]

    GONG Jianshi, WANG Hesheng, ZHU Chunfang, et al. Report of groundwater resources evaluation in Huaihe River Basin[R]. Nanjing: Nanjing Center China Geological Survey, 2023. (in Chinese)

    [18]

    水利部淮河水利委员会. 淮河流域及山东半岛水资源公报[EB/OL]. (2024-09-10)[2024-09-15]. [Huaihe Water Conservancy Commission,Ministry of Water Resources. Bulletin of water resources in Huaihe river basin and Shandong peninsula [EB/OL]. (2024-09-10)[2024-09-15]. http://www.hrc.gov.cn/main/szygb/923431.jhtml. (in Chinese)]

    Huaihe Water Conservancy Commission, Ministry of Water Resources. Bulletin of water resources in Huaihe river basin and Shandong peninsula [EB/OL]. (2024-09-10)[2024-09-15]. http://www.hrc.gov.cn/main/szygb/923431.jhtml. (in Chinese)

    [19]

    沈照理,朱宛华,钟佐燊. 水文地球化学基础[M]. 北京:地质出版社,1993. [SHEN Zhaoli,ZHU Wanhua,ZHONG Zuoshen. Basis of hydrogeochemistry[M]. Beijing:Geological Press,1993. (in Chinese)]

    SHEN Zhaoli, ZHU Wanhua, ZHONG Zuoshen. Basis of hydrogeochemistry[M]. Beijing: Geological Press, 1993. (in Chinese)

    [20]

    何宝南,何江涛,孙继朝,等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘,2022,29(3):51 − 63. [HE Baonan,HE Jiangtao,SUN Jichao,et al. Comprehensive evaluation of regional groundwater pollution:Research status and suggestions[J]. Earth Science Frontiers,2022,29(3):51 − 63. (in Chinese with English abstract)]

    HE Baonan, HE Jiangtao, SUN Jichao, et al. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions[J]. Earth Science Frontiers, 2022, 29(3): 51 − 63. (in Chinese with English abstract)

    [21]

    田福金,马青山,张明,等. 基于主成分分析和熵权法的新安江流域水质评价[J]. 中国地质,2023,50(2):495 − 505. [TIAN Fujin,MA Qingshan,ZHANG Ming,et al. Evaluation of water quality in Xin’anjiang River Basin based on principal component analysis and entropy weight method[J]. Geology in China,2023,50(2):495 − 505. (in Chinese with English abstract)] doi: 10.12029/gc20220810001

    TIAN Fujin, MA Qingshan, ZHANG Ming, et al. Evaluation of water quality in Xin’anjiang River Basin based on principal component analysis and entropy weight method[J]. Geology in China, 2023, 50(2): 495 − 505. (in Chinese with English abstract) doi: 10.12029/gc20220810001

    [22]

    薛伟锋,褚莹倩,吕莹,等. 基于主成分分析和模糊综合评价的地下水水质评价——以大连市为例[J]. 环境保护科学,2020,46(5):87 − 92. [XUE Weifeng,CHU Yingqian,LV Ying,et al. Groundwater quality assessment based on principal component analysis and fuzzy comprehensive evaluation:Taking Dalian as an example[J]. Environmental Protection Science,2020,46(5):87 − 92. (in Chinese with English abstract)]

    XUE Weifeng, CHU Yingqian, LV Ying, et al. Groundwater quality assessment based on principal component analysis and fuzzy comprehensive evaluation: Taking Dalian as an example[J]. Environmental Protection Science, 2020, 46(5): 87 − 92. (in Chinese with English abstract)

    [23]

    ZHOU Fangying,SUN Shunqiang,MOLNAR J J. Evaluation of the development of circular agriculture in Sichuan Province based on the coefficient of variation[J]. Asian Agricultural Research,2015,7(3):56 − 60.

    [24]

    PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos,Transactions American Geophysical Union,1944,25(6):914 − 928. doi: 10.1029/TR025i006p00914

    [25]

    朱春芳,龚建师,陶小虎,等. 淮河流域浅层地下水水化学特征10年对比分析及其环境变迁意义[J]. 华东地质,2023,44(3):282 − 291. [ZHU Chunfang,GONG Jianshi,TAO Xiaohu,et al. Comparison of the hydrochemical characteristics of shallow groundwater in the Huaihe River Basin during a ten-year period and its significance to environmental change[J]. East China Geology,2023,44(3):282 − 291. (in Chinese with English abstract)]

    ZHU Chunfang, GONG Jianshi, TAO Xiaohu, et al. Comparison of the hydrochemical characteristics of shallow groundwater in the Huaihe River Basin during a ten-year period and its significance to environmental change[J]. East China Geology, 2023, 44(3): 282 − 291. (in Chinese with English abstract)

    [26]

    中华人民共和国国土资源部和水利部. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017. [Ministry of Land and Resources and Ministry of Water Resources of the people’s Republic of China. Standard for groundwater quality:GB/T 14848—2017[S]. Beijing:Standards Press of China,2017. (in Chinese)]

    Ministry of Land and Resources and Ministry of Water Resources of the people’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)

    [27]

    WANG Haoran,ZHANG Mengdi,WANG Chuanying,et al. A novel method for quantifying human disturbances:A case study of Huaihe River Basin,China[J]. Frontiers in Public Health,2023,10:1120576. doi: 10.3389/fpubh.2022.1120576

    [28]

    GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088 − 1090. doi: 10.1126/science.170.3962.1088

    [29]

    GIBBS R J. Water chemistry of the Amazon River[J]. Geochimica et Cosmochimica Acta,1972,36(9):1061 − 1066. doi: 10.1016/0016-7037(72)90021-X

    [30]

    ZHU Bingqi,YANG Xiaoping,RIOUAL P,et al. Hydrogeochemistry of three watersheds (the Erlqis,Zhungarer and Yili) in northern Xinjiang,NW China[J]. Applied Geochemistry,2011,26(8):1535 − 1548. doi: 10.1016/j.apgeochem.2011.06.018

    [31]

    FAN Bailing,ZHAO Zhiqi,TAO Faxiang,et al. Characteristics of carbonate,evaporite and silicate weathering in Huanghe River basin:A comparison among the upstream,midstream and downstream[J]. Journal of Asian Earth Sciences,2014,96:17 − 26. doi: 10.1016/j.jseaes.2014.09.005

    [32]

    ZHAI Yuanzheng,ZHAO Xiaobing,TENG Yanguo,et al. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area,NE China[J]. Ecotoxicology and Environmental Safety,2017,137:130 − 142. doi: 10.1016/j.ecoenv.2016.11.010

    [33]

    ZHAI Yuanzheng,LEI Yan,WU Jin,et al. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data[J]. Environmental Science and Pollution Research,2017,24(4):3640 − 3653. doi: 10.1007/s11356-016-8088-9

    [34]

    HUDAK P F. Regional trends in nitrate content of Texas groundwater[J]. Journal of Hydrology,2000,228(1/2):37 − 47.

    [35]

    涂春霖,陈庆松,尹林虎,等. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学,2024,45(6):3129 − 3141. [TU Chunlin,CHEN Qingsong,YIN Linhu,et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science,2024,45(6):3129 − 3141. (in Chinese with English abstract)]

    TU Chunlin, CHEN Qingsong, YIN Linhu, et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science, 2024, 45(6): 3129 − 3141. (in Chinese with English abstract)

  • 加载中

(11)

(3)

计量
  • 文章访问数:  28
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2024-09-18
修回日期:  2024-11-13
刊出日期:  2025-05-15

目录