Prediction and uncertainty analysis of pollution flux of typical chlorinated hydrocarbon contaminated sites
-
摘要:
准确评估有机污染场地中重非水相液体的溶解相污染羽场界污染通量及其不确定性对于场地风险评估及决策管理至关重要。在实际场地中,由于地下水流场的复杂性,多个污染源的溶解污染羽扩散方向并不完全一致。常用的数值模型虽然模拟精度高,但需要大量的场地调查资料,在实际场景中场地提供的资料难以满足这种需求,而目前常用的解析模型则未考虑地下水流场的复杂性及多个污染源同时存在的问题。针对该问题,文章基于升尺度解析模型,结合流函数及坐标转换方法,利用常州某典型氯代烃污染场地的土壤和地下水观测数据,基于极大似然估计反演方法识别污染源区,推估其各污染源区结构参数、地下水流速及低渗介质等效厚度,预测场地场界的污染通量,并基于线性化不确定性传递方法评估其不确定性。反演结果表明,相较于传统解析模型将流场视为单一流向,在考虑实际流场复杂性的情况下参数识别结果不确定性更低,模拟值与观测值拟合更好。该场地内污染状况仍较严峻,且污染范围已超过场界,需对污染羽及时控制并修复。在自然衰减条件下,模拟结果显示2023—2027年的场界总污染通量由73.66 g/d下降至66.77 g/d。校正后的模型预测结果不确定性变化较小,95%置信区间由2023年的(73.66±0.71)g/d变化为2027年的(66.77±0.87) g/d。场地污染通量预测结果为该场地的风险评估与修复提供了决策依据。
Abstract:Accurate assessment of the pollution flux and its uncertainty in the plume boundary of NAPL dissolved phase pollution in organic contaminated sites is very important for site risk assessment and decision management. Due to the complexity of underground water flow field, the directions of dissolved pollution plume diffusion of multiple pollution sources are not completely consistent. Traditional numerical models require a lot of data, and usually, the site data is difficult to meet the needs, while current commonly used analytical models do not consider the complexity of groundwater flow field and the simultaneous existence of multiple pollution sources. To solve this issue, this study utilized soil and groundwater monitoring data from a typical chlorinated hydrocarbon polluted site in Changzhou, applying an upscale analytical model integrated with the flow function and coordinate transformation method. The maximum likelihood estimation inversion method was employed to identify pollution source areas, estimate structural parameters, groundwater flow rates, and equivalent low-permeability medium thickness, and predict pollution flux at the site boundary. The uncertainty is evaluated based on linearized uncertainty transfer method. The inversion results show that considering a complex flow field rather than assuming single-direction flow significantly reduces parameter uncertainty while improving agreement between simulated and observed values. The pollution situation at the site is still serious, and the pollution scope has exceeded the field limit. The pollution plume needs to be controlled and repaired in time. Under natural attenuation conditions, the simulation results show that After model correction, the uncertainty of predictions remains minimal, with the 95% confidence interval changed from (73.66±0.71) g/d in 2023 to (66.77±0.87) g/d in 2027. The results of site pollution flux prediction provide the scientific basis for risk assessment and restoration of the site.
-
Key words:
- contaminated sites /
- DNAPL /
- mass flux /
- great likelihood estimations /
- uncertainty analysis /
- streamline equation
-
-
表 1 土壤调查结果
Table 1. Soil survey results
污染物 调查时期 检出值/(mg·kg−1) 最大值区域位置 1,2—
二氯乙烷2020年详查 395 恶唑烷酮车间、噻唑酮车间 2021年补充调查 333 蚍虫啉车间 表 2 地下水调查结果
Table 2. Groundwater survey results
污染物 采样深度/m 质量浓度/(μg·L−1) 最大值点位井编号/深度 最大值区域位置 1,2—
二氯乙烷8 1.16~ 26759 MW9/8 m 恶唑烷酮车间 15 1.8~ 15726 MW14/15 m 恶唑烷酮车间 表 3 3个污染源流线方程系数
Table 3. Flow line equation coefficients of three sources
参数 污染源1 污染源2 污染源3 a −1.8 −1.5 − 0.0875 b 0 − 0.00005 0.00001 c 0 0 0 -
[1] 陆强,李辉,林匡飞,等. 上海浦东某氯代烃场地地下水污染现状调查[J]. 环境科学学报,2016,36(5):1730 − 1737. [LU Qiang,LI Hui,LIN Kuangfei,et al. Investigation of chlorinated hydrocarbons in groundwater from a typical contaminated site in pudong district,Shanghai[J]. Acta Scientiae Circumstantiae,2016,36(5):1730 − 1737. (in Chinese with English abstract)]
LU Qiang, LI Hui, LIN Kuangfei, et al. Investigation of chlorinated hydrocarbons in groundwater from a typical contaminated site in pudong district, Shanghai[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1730 − 1737. (in Chinese with English abstract)
[2] 保航,江卓珊,罗彩访,等. 中国城市污染地块开发利用中的问题与对策[R/OL]. 南京:南京大学(溧水) 生态环境研究院,2019. [2023-06-09]. [BAO Hang, JIANG Zhuoshan, LUO Caifang, et al. Problems and countermeasures in the development and utilization of polluted land in Chinese cities[R/OL]. Nanjing: Lishui Institute of Ecological Environment, Nanjing University, 2019. (2019-04-17)[2023-06-09]. Https://www.greenpeace.org.cn/2019/04/17/redeveloping-the-polluted-land-under-chinas-cities-problems-and-solutions-report/. (in Chinese)]
BAO Hang, JIANG Zhuoshan, LUO Caifang, et al. Problems and countermeasures in the development and utilization of polluted land in Chinese cities[R/OL]. Nanjing: Lishui Institute of Ecological Environment, Nanjing University, 2019. (2019-04-17)[2023-06-09]. Https://www.greenpeace.org.cn/2019/04/17/redeveloping-the-polluted-land-under-chinas-cities-problems-and-solutions-report/. (in Chinese)
[3] 朱辉,叶淑君,吴吉春,等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘,2021,28(5):26 − 34. [ZHU Hui,YE Shujun,WU Jichun,et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers,2021,28(5):26 − 34. (in Chinese with English abstract)]
ZHU Hui, YE Shujun, WU Jichun, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021, 28(5): 26 − 34. (in Chinese with English abstract)
[4] KUEPER B H,REDMAN D,STARR R C,et al. A field experiment to study the behavior of tetrachloroethylene below the water table:Spatial distribution of residual and pooled DNAPL[J]. Ground Water,1993,31(5):756 − 766. doi: 10.1111/j.1745-6584.1993.tb00848.x
[5] MERCER J W,COHEN R M. A review of immiscible fluids in the subsurface:Properties,models,characterization and remediation[J]. Journal of Contaminant Hydrology,1990,6(2):107 − 163. doi: 10.1016/0169-7722(90)90043-G
[6] FRIED J J. Groundwater pollution:Theory,methodology,modelling and practical rules[M]. New York:Elsevier Scientific Pub. Co. ,1975.
[7] 宋美钰,施小清,马春龙,等. 复杂DNAPL污染源区溶解相污染通量的升尺度计算[J]. 中国环境科学,2022,42(5):2095 − 2104. [SONG Meiyu,SHI Xiaoqing,MA Chunlong,et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science,2022,42(5):2095 − 2104. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6923.2022.05.013
SONG Meiyu, SHI Xiaoqing, MA Chunlong, et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science, 2022, 42(5): 2095 − 2104. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2022.05.013
[8] 边淑贞. 氯代烃污染地下水中重质非水相液体通量估算研究[D]. 保定:河北农业大学,2015. [BIAN Shuzhen. Research on contaminant mass flux of dense Non-Aqueous phase liquids in chlorinated hydrocarbon contaminated site[D]. Baoding:Agricultural University of Hebei,2015. (in Chinese with English abstract)]
BIAN Shuzhen. Research on contaminant mass flux of dense Non-Aqueous phase liquids in chlorinated hydrocarbon contaminated site[D]. Baoding: Agricultural University of Hebei, 2015. (in Chinese with English abstract)
[9] GUILBEAULT M A,PARKER B L,CHERRY J A. Mass and flux distributions from DNAPL zones in sandy aquifers[J]. Groundwater,2005,43(1):70 − 86. doi: 10.1111/j.1745-6584.2005.tb02287.x
[10] INTEGRATED DNAPL SITE STRATEGY TEAM. Use and measurement of mass flux and mass discharge[EB/OL]. Washington:Interstate Technology & Regulatory Council,2010. (2021-06)[2023-06-09]. https://maf-1.itrcweb.org/.
[11] FALTA R W,BASU N,RAO P S. Assessing impacts of partial mass depletion in DNAPL source zones:II. Coupling source strength functions to plume evolution[J]. Journal of Contaminant Hydrology,2005,79(1/2):45 − 66.
[12] GUO Yongli,WEN Zhang,ZHANG Cheng,et al. Contamination characteristics of chlorinated hydrocarbons in a fractured karst aquifer using TMVOC and hydro-chemical techniques[J]. Science of the Total Environment,2021,794:148717. doi: 10.1016/j.scitotenv.2021.148717
[13] KAZEMI NIA KORRANI A,SEPEHRNOORI K,DELSHAD M. Coupling IPhreeqc with UTCHEM to model reactive flow and transport[J]. Computers & Geosciences,2015,82:152 − 169.
[14] 张小茅,周俊,熊小锋,等. 地下水环境影响评价中污染物运移模拟软件的适宜性评估[J]. 环境科学研究,2019,32(1):10 − 16. [ZHANG Xiaomao,ZHOU Jun,XIONG Xiaofeng,et al. Evaluation of contaminant transport modeling software for groundwater environmental impact assessment[J]. Research of Environmental Sciences,2019,32(1):10 − 16. (in Chinese with English abstract)]
ZHANG Xiaomao, ZHOU Jun, XIONG Xiaofeng, et al. Evaluation of contaminant transport modeling software for groundwater environmental impact assessment[J]. Research of Environmental Sciences, 2019, 32(1): 10 − 16. (in Chinese with English abstract)
[15] 孙科,吴吉春,施小清,等. 应用DNAPL plume快速评估场地DNAPL污染[J]. 水文地质工程地质,2013,40(6):92 − 97. [SUN Ke,WU Jichun,SHI Xiaoqing,et al. Rapid evaluation of field DNAPL contamination based on DNAPL plume[J]. Hydrogeology & Engineering Geology,2013,40(6):92 − 97. (in Chinese with English abstract)]
SUN Ke, WU Jichun, SHI Xiaoqing, et al. Rapid evaluation of field DNAPL contamination based on DNAPL plume[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 92 − 97. (in Chinese with English abstract)
[16] FARHAT S K,NEWELL C J,LEE S A,et al. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds[J]. Journal of Contaminant Hydrology,2022,247:103987. doi: 10.1016/j.jconhyd.2022.103987
[17] 薛佩佩,文章,梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报,2022,41(1):209 − 222. [XUE Peipei,WEN Zhang,LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology,2022,41(1):209 − 222. (in Chinese with English abstract)]
XUE Peipei, WEN Zhang, LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209 − 222. (in Chinese with English abstract)
[18] 郭芷琳,马瑞,张勇,等. 地下水污染物在高度非均质介质中的迁移过程:机理与数值模拟综述[J]. 中国科学(地球科学),2021,51(11):1817 − 1836. [GUO Zhilin,MA Rui,ZHANG Yong,et al. Contaminant transport in heterogeneous aquifers:A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Scientia Sinica(Terrae),2021,51(11):1817 − 1836. (in Chinese with English abstract)]
GUO Zhilin, MA Rui, ZHANG Yong, et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Scientia Sinica(Terrae), 2021, 51(11): 1817 − 1836. (in Chinese with English abstract)
[19] ZHU Jianting,SYKES J F. Simple screening models of NAPL dissolution in the subsurface[J]. Journal of Contaminant Hydrology,2004,72(1/4):245 − 258.
[20] PARKER J C,PARK E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers[J]. Water Resources Research,2004,40(5):147 − 158.
[21] STEWART L D,CHAMBON J C,WIDDOWSON M A,et al. Upscaled modeling of complex DNAPL dissolution[J]. Journal of Contaminant Hydrology,2022,244:103920. doi: 10.1016/j.jconhyd.2021.103920
[22] CHRIST J A,RAMSBURG C A,PENNELL K D,et al. Predicting DNAPL mass discharge from pool-dominated source zones[J]. Journal of Contaminant Hydrology,2010,114(1/4):18 − 34.
[23] 程洲,吴吉春,徐红霞,等. DNAPL在透镜体及表面活性剂作用下的运移研究[J]. 中国环境科学,2014,34(11):2888 − 2896. [CHENG Zhou,WU Jichun,XU Hongxia,et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science,2014,34(11):2888 − 2896. (in Chinese with English abstract)]
CHENG Zhou, WU Jichun, XU Hongxia, et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science, 2014, 34(11): 2888 − 2896. (in Chinese with English abstract)
[24] LI Hailong,YANG Qichang. A least-squares penalty method algorithm for inverse problems of steady-state aquifer models[J]. Advances in Water Resources,2000,23(8):867 − 880. doi: 10.1016/S0309-1708(00)00018-X
[25] HOLLENBECK K J,JENSEN K H,et al. Maximum-likelihood estimation of unsaturated hydraulic parameters[J]. Journal of Hydrology,210(1/4):192–205.
[26] YOUNES A,ZAOUALI J,FAHS M,et al. Bayesian soil parameter estimation:Results of percolation-drainage vs infiltration laboratory experiments[J]. Journal of Hydrology,2018,565:770 − 778. doi: 10.1016/j.jhydrol.2018.08.082
[27] BENTLEY L R. Least squares solution and calibration of steady state groundwater flow systems[J]. Advances in Water Resources,1993,16(2):137 − 148. doi: 10.1016/0309-1708(93)90004-Y
[28] LIU Xiaoyi,CARDIFF M A,KITANIDIS P K,et al. Parameter estimation in nonlinear environmental problems[J]. Stochastic Environmental Research and Risk Assessment,2010,24(7):1003 − 1022. doi: 10.1007/s00477-010-0395-y
[29] GILKS W R,ROBERTS G O,GEORGE E I. Adaptive direction sampling[J]. Journal of the Royal Statistical Society Series D(The Statistician),1994,43(1):179 − 189.
[30] CARDIFF M,LIU Xiaoyi,KITANIDIS P K,et al. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model[J]. Journal of Contaminant Hydrology,2010,113(1/4):25 − 43.
[31] PARKER J,KIM U,BORDEN B. A practical approach for remediation performance assessment and optimization at DNAPL sites for early identification and correction of problems considering uncertainty[R]. America:University of Tennessee,2018.
[32] 袁松虎,张鹏,康学远,等. 含水层非均质性与污染修复[J]. 地球科学,2024,49(1):375 − 378. [YUAN Songhu,ZHANG Peng,KANG Xueyuan,et al. Aquifer heterogeneity and contamination remediation[J]. Earth Science,2024,49(1):375 − 378. (in Chinese with English abstract)]
YUAN Songhu, ZHANG Peng, KANG Xueyuan, et al. Aquifer heterogeneity and contamination remediation[J]. Earth Science, 2024, 49(1): 375 − 378. (in Chinese with English abstract)
[33] PARKER J,KIM U,KITANIDIS P,et al. Stochastic cost optimization of DNAPL remediation–method description and sensitivity study[J]. Environmental Modelling & Software,2012,38:74 − 88.
[34] GENUCHTEN M,WIERENGA P J. Mass transfer studies in sorbing porous media I. analytical solutions[J]. Soil Science Society of America Journal,1976,40(4):473 − 480. doi: 10.2136/sssaj1976.03615995004000040011x
[35] PARKER J C,KIM U. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation[J]. Journal of Contaminant Hydrology,2015,182:157 − 172. doi: 10.1016/j.jconhyd.2015.09.008
[36] MAYER A S,HUANG Changlin. Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method[J]. Advances in Water Resources,1999,22(8):841 − 853. doi: 10.1016/S0309-1708(98)00049-9
[37] KITANIDIS P K. Quasi‐linear geostatistical theory for inversing[J]. Water Resources Research,1995,31(10):2411 − 2419. doi: 10.1029/95WR01945
[38] KITANIDIS P K. Parametric estimation of covariances of regionalized variables1[J]. Journal of the American Water Resources Association,1987,23(4):557 − 567. doi: 10.1111/j.1752-1688.1987.tb00832.x
[39] 中华人民共和国生态环境部. 地下水环境监测技术规范:HJ 164—2020[S]. 北京:中国环境科学出版社,2020. [Ministry of Ecology and Environment of People’s Republic of China. Technical specifications for environmental monitoring of groundwater:HJ 164—2020[S]. Beijing:China Environmental Press,2020. (in Chinese)]
Ministry of Ecology and Environment of People’s Republic of China. Technical specifications for environmental monitoring of groundwater: HJ 164—2020[S]. Beijing: China Environmental Press, 2020. (in Chinese)
[40] 兰天,焦友军,施小清,等. 观测数据权重对地下水有机污染物生物降解模型参数估计的影响[J]. 环境科学学报,2016,36(8):3040 − 3048. [LAN Tian,JIAO Youjun,SHI Xiaoqing,et al. Effect of the observation weights on model parameter estimation for biodegradation of organic containments in groundwater[J]. Acta Scientiae Circumstantiae,2016,36(8):3040 − 3048. (in Chinese with English abstract)]
LAN Tian, JIAO Youjun, SHI Xiaoqing, et al. Effect of the observation weights on model parameter estimation for biodegradation of organic containments in groundwater[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 3040 − 3048. (in Chinese with English abstract)
[41] 杜方舟,施小清,康学远. 污染地块中NAPL相污染源存在的判定方法改进及软件开发[J]. 安全与环境工程,2022,29(5):175 − 182. [DU Fangzhou,SHI Xiaoqing,KANG Xueyuan. Improved method and software development for assessing NAPL phase presence in contaminated sites[J]. Safety and Environmental Engineering,2022,29(5):175 − 182. (in Chinese with English abstract)]
DU Fangzhou, SHI Xiaoqing, KANG Xueyuan. Improved method and software development for assessing NAPL phase presence in contaminated sites[J]. Safety and Environmental Engineering, 2022, 29(5): 175 − 182. (in Chinese with English abstract)
[42] 宋美钰,施小清,康学远,等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报,2023,42(2):327 − 335. [SONG Meiyu,SHI Xiaoqing,KANG Xueyuan,et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology,2023,42(2):327 − 335. (in Chinese with English abstract)]
SONG Meiyu, SHI Xiaoqing, KANG Xueyuan, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327 − 335. (in Chinese with English abstract)
-