-
摘要:
精确测定地下水中不同形态汞(Hg)的浓度变化,对于深入解析汞的迁移转化机制及其对水生态安全构成的潜在风险具有重要意义。然而,这一基础性研究工作目前面临挑战,瓶颈问题在于缺乏一种兼具高灵敏度、高可靠性且适宜现场快速部署的检测技术,以实现对地下水中超痕量Hg(II)的精准监测。鉴于此,文章介绍了基于脱氧核糖核酸(DNA)传感材料的新型检测手段,并深入探究了两种生物传感方法的可行性及优劣:其一是利用DNA功能化水凝胶直接检测地下水中的Hg(II);其二则是通过结合薄膜扩散梯度技术(DGT)与DNA传感元件,构建DNA-DGT传感器,实现Hg(II)的即时采样与检测。通过对来自加拿大格兰德河流域具有多种水文地球化学特征的地下水进行测试,发现DNA功能化水凝胶能够快速检测溶解态Hg(II),但不适用于低浓度Hg(II)(<1.60 μg/L),而DNA-DGT传感器可以根据测试时长捕获不同浓度的超痕量Hg(II)形态。进一步结合DNA-DGT传感器检测和水文地球化学计算对地下水中Hg(II)形态进行量化分析,发现温度、pH值、Cl−和溶解性有机质(dissolved organic matter,DOM)对痕量Hg(II)的形态分布、扩散效率及迁移能力产生显著影响。结合水文地球化学模拟分析,DNA-DGT测量结果揭示了Hg(II)的迁移转化过程与地下水中硫的氧化还原循环存在密切关联。研究强调了运用高灵敏度、便于现场部署的生物传感方法监测低浓度Hg(II),对于认识地下水中汞的迁移转化规律及其对安全供水构成的潜在威胁具有重要意义。
Abstract:Accurate quantification of various mercury (Hg) species dynamics in groundwater is critical for understanding Hg mobilization, fate, and consequent impacts on water ecological security. This foundational work, however, faces challenges due to the lack of highly sensitive, reliable, and field-deployable detection technologies that can determine and monitor ultra-trace Hg(II) in groundwater. Here, this research presents and assesses two types of biosensing methods for dissolved Hg(II) based on a deoxyribonucleic acid (DNA) sensing material: the DNA-functionalized hydrogel for direct Hg(II) detection in groundwater and the DNA-DGT sensor for simultaneous sampling and detection with the diffusive gradients in thin films technique (DGT). Applying tests to hydrogeochemically diverse groundwaters from the Grand River Watershed, Canada, the results indicate that the DNA-functionalized hydrogel is able to quickly detect dissolved Hg(II) but inapplicable to low Hg(II) concentrations (<1.60 μg/L), whereas the DNA-DGT sensor can capture variably ultra-trace Hg(II) species depending on the deployment time. Quantification of Hg(II) species in groundwater via joint DNA-DGT sensing and hydrogeochemical calculation indicates that temperature, pH, Cl−, and dissolved organic matter significantly affected partitioning of trace Hg(II) between various mobile species, diffusion efficiency, and thus its mobility. Combined with hydrogeochemical modeling, the DNA-DGT measurements reveal that mobilization and transformation of Hg(II) are linked to redox cycling of sulfur in groundwater. This study therefore highlights that monitoring of low-level Hg(II) with ultra-sensitive, field-deployable biosensing methods is of significance to understanding mobility and fate of Hg in groundwater and its threat to safe drinking water supply.
-
Key words:
- mercury /
- bionanosensing /
- groundwater pollution /
- in-situ monitoring /
- hydrogeochemical modeling /
- mobilization
-
-
表 1 25 °C条件下Hg2+与各种无机和有机配体络合反应的平衡常数(Kc)
Table 1. Equilibrium constants (Kc) of complexation reactions between Hg2+ and various inorganic and organic ligands at 25 °C
络合反应 lgKc(25 ℃) 参考文献 络合反应 lgKc(25 ℃) 参考文献 ${\mathrm{OH}}^{-} $ ${\mathrm{Hg}}^{2+} + {\mathrm{OH}}^{-} = {\mathrm{HgOH}}^{+} $ 10.42 [7] ${\mathrm{Cl}}^{-} $ $\text{Hg}^{2+} + \text{Cl}^- = \text{HgCl}^+ $ 7.30 [8] $\text{Hg}^{2+} + 2\text{OH}^- = \text{Hg(OH)}_2 $ 21.83 [7] $ \text{Hg}^{2+} + 2\text{Cl}^- = \text{HgCl}_2$ 14.00 [8] ${\mathrm{Hg}}^{2+} + 3{\mathrm{OH}}^{-} ={\mathrm{Hg(OH)}}_3^{-} $ 20.90 [7] ${\mathrm{Hg}}^{2+} + 3{\mathrm{Cl}}^{-} = {\mathrm{HgCl}}_3^- $ 15.00 [8] $2\text{Hg}^{2+} + \text{OH}^- = \text{Hg}_2\text{OH}^{3+} $ 10.70 [8] $\text{Hg}^{2+} + 4\text{Cl}^- = \text{HgCl}_4^{2-} $ 15.60 [8] $3\text{Hg}^{2+} + 3\text{OH}^- = \text{Hg}_3(\text{OH})_3^{3+} $ 35.60 [8] $\text{Hg}^{2+} + \text{Cl}^- + \text{OH}^- = \text{HgClOH} $ 18.25 [8] $\text{SO}_4^{2-} $ $\text{Hg}^{2+} + \text{SO}_4^{2-} = \text{HgSO}_4 $ 2.41 [8] $\text{NO}_3^- $ $ {\mathrm{Hg}}^{2+} + {\mathrm{NO}}_3^{-} = {\mathrm{HgNO}}_3^{+}$ −0.43 [8] $\text{Hg}^{2+} + 2\text{SO}_4^{2-} = \text{Hg(SO}_4)_2^{2-}$ 3.47 [8] $\text{Hg}^{2+} + 2\text{NO}_3^- = \text{Hg(NO}_3)_2 $ −0.81 [8] $ \text{SO}_3^{2-}$ $\text{Hg}^{2+} + \text{SO}_3^{2-} = \text{HgSO}_3$ 10.30 [9] ${\mathrm{F}}^- $ $\text{Hg}^{2+} + \text{F}^- = \text{HgF}^+ $ 1.60 [8] $\text{Hg}^{2+} + 2\text{SO}_3^{2-} = \text{Hg(SO}_3)_2^{2-} $ 23.40 [8] $ \text{Hg}^{2+} + 3\text{SO}_3^{2-} = \text{Hg(SO}_3)_3^{4-}$ 24.10 [8] $\text{S}^{2-}$ $ \text{Hg}^{2+} + \text{S}^{2-} = \text{HgS} $ 7.90 [8] $ \text{CO}_3^{2-}$ $ \text{Hg}^{2+} + \text{CO}_3^{2-} = \text{HgCO}_3 $ 12.07 [8] $ \text{Hg}^{2+} + 2\text{S}^{2-} = \text{HgS}_2^{2-}$ 51.02 [8] $\text{Hg}^{2+} + 2\text{CO}_3^{2-} = \text{Hg(CO}_3)_2^{2-}$ 15.57 [8] $ \text{Hg}^{2+}+\text{S}^{2-}+\text{OH}^-=\text{HgSOH}^- $ 18.50 [8] $\text{Hg}^{2+} + \text{CO}_3^{2-} + \text{H}^+ = \text{HgHCO}_3^+$ 16.34 [8] $\text{Hg}^{2+} + \text{S}^{2-} + \text{H}^+ = \text{HgHS}^+ $ 43.12 [9] $\text{Hg}^{2+} + \text{CO}_3^{2-} + \text{OH}^- = \text{HgOHCO}_3^- $ 19.20 [8] $ \text{Hg}^{2+} + 2\text{S}^{2-} + \text{H}^+ = \text{HgHS}_2^- $ 59.73 [8] $ \text{Hg}^{2+} + 2\text{S}^{2-} + 2\text{H}^+ = \text{HgH}_2\text{S}_2$ 66.12 [8] $ \text{NO}_3^- $ $\text{Hg}^{2+} + \text{NO}_3^- = \text{HgNO}_3^+$ −0.43 [8] $\text{PO}_4^{3-} $ $ \text{Hg}^{2+} + \text{PO}_4^{3-} = \text{HgPO}_4^-$ 12.38 [8] $\text{Hg}^{2+} + 2\text{NO}_3^- = \text{Hg(NO}_3)_2 $ −0.81 [8] $\text{Hg}^{2+} + \text{PO}_4^{3-} + \text{H}^+ = \text{HgHPO}_4 $ 20.09 [8] $\text{NO}_2^- $ $ \text{Hg}^{2+} + \text{NO}_2^- = \text{HgNO}_2^+ $ 6.35 [8] $\text{NH}_3 $ $\text{Hg}^{2+} + \text{NH}_3 = \text{HgNH}_3^{2+} $ 8.75 [8] $ \text{Hg}^{2+} + 2\text{NO}_2^- = \text{Hg(NO}_2)_2 $ 10.52 [8] $\text{Hg}^{2+} + 2\text{NH}_3 = \text{Hg(NH}_3)_2^{2+} $ 17.80 [8] $ \text{Hg}^{2+} + 3\text{NO}_2^- = \text{Hg(NO}_2)_3^-$ 12.06 [8] $\text{Hg}^{2+} + 3\text{NH}_3 = \text{Hg(NH}_3)_3^{2+} $ 18.20 [8] $\text{Hg}^{2+} + 4\text{NO}_2^- = \text{Hg(NO}_2)_4^{2-} $ 12.27 [8] $ \text{Hg}^{2+} + 4\text{NH}_3 = \text{Hg(NH}_3)_4^{2+} $ 19.30 [8] 表 1 加拿大格兰德河流域地下水样理化参数和组分一览
Table 1. Overview of physicochemical parameters and components of groundwater samples collected from the Grand River Watershed, Canada
参数 最大值 最小值 中位值 平均值 标准偏差 温度/°C 14.7 4.9 10.8 10.6 3.1 pH 7.98 7.29 7.72 7.67 0.28 电导率/(μS·cm−1) 2399 206 662 884 744 质
量
浓
度
(ρ)Na+ /(mg·L−1) 166.30 10.61 24.45 44.30 51.98 K+/(mg·L−1) 8.55 1.14 3.46 3.93 2.32 Ca2+/(mg·L−1) 500.90 35.78 106.90 183.90 187.70 Mg2+/(mg·L−1) 144.70 8.83 32.76 40.30 43.82 Si/(mg·L−1) 5.15 0.48 3.35 3.00 1.74 Sr/(mg·L−1) 10.34 0.19 0.69 2.42 3.59 Fe(II)/(μg·L−1) 22 8 16 15 4 $\text{HCO}_3^{-} $ /(mg·L−1)583.3 180.6 363.4 377.8 152.8 $\text{Cl}^{-} $ /(mg·L−1)111.30 1.46 25.49 35.57 38.33 $\text{SO}_4^{2-} $ /(mg·L−1)1526.00 4.84 81.06 362.50 583.70 溶解硫化物/(μg·L−1) <5 <5 <5 <5 — $\text{NO}_3^{-} $ /(mg·L−1)5.95 <0.01 0.68 1.20 1.99 $\text{NH}_4^{+} $ −N/(mg·L−1)0.12 0.03 0.06 0.06 0.03 总磷/(μg·L−1) 653 1 4 88 229 DOC/(mg·L−1) 5.13 1.79 3.13 3.04 1.04 溶解态汞/(μg·L−1) 3.79 0.21 0.98 1.32 1.21 溶解态Hg(II)a/(μg·L−1) 3.66 0.70 1.21 1.52 0.97 溶解态Hg(II)b/(μg·L−1) 3.50 0.27 0.97 1.30 1.12 溶解态Hg(II)c/(μg·L−1) 3.44 0.19 0.94 1.23 1.10 注:a表示通过单一DNA功能化水凝胶传感器测得的溶解态Hg(II)浓度;b表示DNA-DGT传感器测得的溶解态Hg(II)浓度;c表示阳极溶出伏安法测得的溶解态Hg(II)浓度。 表 2 Hg2+与DNA分子及竞争性配体络合反应的平衡常数(Kc)和反应摩尔焓变(ΔHm)
Table 2. Equilibrium constants (Kc) and reaction enthalpies (ΔHm) for complexation of Hg2+ with the DNA molecules and various competing ligands
络合反应 lgKc(25 °C) ΔHm/(kJ·mol−1) 参考文献 丙烯酰胺基-Hg-DNA $2\text{RNC}_5\text{H}_4\text{O}_2\text{NH} + \text{Hg}^{2+} = \text{Hg}(\text{RNC}_5\text{H}_4\text{O}_2\text{N})_2 + 2\text{H}^+ $ 19.80 −81.27 [4] ${\mathrm{OH}}^{-} $ ${\mathrm{Hg}}^{2+} + {\mathrm{OH}}^{-} = {\mathrm{HgOH}}^{+} $ 10.42 −25.68 [7] $ \text{Hg}^{2+} + 2\text{OH}^- = \text{Hg(OH)}_2$ 21.83 −66.32 [7] $\text{Hg}^{2+} + 3\text{OH}^- = \text{Hg(OH)}_3^- $ 20.90 −39.90 [7] $2\text{Hg}^{2+} + \text{OH}^- = \text{Hg}_2\text{OH}^{3+} $ 10.70 −30.34 [11] $3\text{Hg}^{2+} + 3\text{OH}^- = \text{Hg}_3(\text{OH})_3^{3+} $ 35.60 −80.23 [11] ${\text{Cl}^-} $ $\text{Hg}^{2+} + \text{Cl}^- = \text{HgCl}^+ $ 7.30 −22.65 [7] $\text{Hg}^{2+} + 2\text{Cl}^- = \text{HgCl}_2 $ 14.00 −52.87 [7] $\text{Hg}^{2+} + 3\text{Cl}^- = \text{HgCl}_3^- $ 15.00 −58.04 [7] $\text{Hg}^{2+} + 4\text{Cl}^- = \text{HgCl}_4^{2-} $ 15.60 −56.39 [7] $\text{Hg}^{2+} + \text{Cl}^- + \text{OH}^- = \text{HgClOH} $ 18.25 −62.53 [7] 注:在5~50 ℃的温度范围内,反应摩尔焓变值恒定,因此可用范特霍夫方程来校准变化地下水温度下的反应平衡常数。 表 3 5~40 ℃温度范围内Hg(II)的无机和有机络合物的扩散系数
Table 3. Diffusion coefficients of inorganic and organic complexes of Hg(II) at temperature range of 5−40 °C
温度/°C Dinorg/ (cm2·s−1) Dorg / (cm2·s−1) 5 4.86×10−6 5.29×10−7 10 5.76×10−6 6.28×10−7 15 6.75×10−6 7.35×10−7 20 7.83×10−6 8.53×10−7 25 9.00×10−6 9.80×10−7 30 1.03×10−5 1.12×10−6 35 1.16×10−5 1.26×10−6 40 1.30×10−5 1.42×10−6 注:Dinorg和Dorg分别代表无机Hg(II)(与Cl−、 $ \text{SO}_4^{2-} $ 、$\text{HCO}_3^{-} $ 和${{\mathrm{H}}_{2}{\mathrm{CO}}}_4^{-} $ 络合的Hg2+)和有机Hg(II)(与DOM络合的Hg2+)络合物的扩散系数。 -
[1] DRISCOLL C T, MASON R P, CHAN H M, et al . Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology,2013 ,47 (10 ):4967 −4983 .[2] 冯新斌, 仇广乐, 付学吾, 等 . 环境汞污染[J]. 化学进展,2009 ,21 (2 ):436 −457 .FENG Xinbin, QIU Guangle, FU Xuewu, et al . Mercury pollution in the environment[J]. Progress in Chemistry,2009 ,21 (2 ):436 −457 . (in Chinese with English abstract)[3] doi: 10.1016/j.chemosphere.2017.12.105ANDREA C, STEFANO C, ANDREA E, et al . Mercury in the unconfined aquifer of the Isonzo/Soča River alluvial plain downstream from the Idrija mining area[J]. Chemosphere,2018 ,195 :749 −761 .[4] doi: 10.1007/s11356-015-5527-yDADOVÁ J, ANDRÁŠ P, KUPKA J, et al . Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia)[J]. Environmental science and pollution research international,2016 ,23 (3 ):2914 −2927 .[5] doi: 10.1016/j.scitotenv.2014.02.034GONZÁLEZ-FERNÁNDEZ B, MENÉNDEZ-CASARES E, MELÉNDEZ-ASENSIO M, et al . Sources of mercury in groundwater and soils of West Gijón (Asturias, NW Spain)[J]. Science of the Total Environment,2014 ,481 :217 −231 .[6] doi: 10.3969/j.issn.1674-991X.2018.02.030曾晨, 郭少娟, 杨立新 . 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018 ,8 (2 ):221 −230 . doi: 10.3969/j.issn.1674-991X.2018.02.030ZENG Chen, GUO Shaojuan, YANG Lixin . Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018 ,8 (2 ):221 −230 . (in Chinese with English abstract)[7] BARRINGER J L, SZABO Z, REILLY P A, et al. Variable contributions of mercury from groundwater to a First-Order urban coastal plain stream in New Jersey, USA[J]. Water, Air, & Soil Pollution, 2013, 224(4): 1475. [8] 邱文杰, 宋健, 吴剑锋, 等 . 污染场地地下水中汞污染反应运移模拟[J]. 环境科学学报,2020 ,40 (7 ):2502 −2510 .QIU Wenjie, SONG Jian, WU Jianfeng, et al . Reactive transport modeling of mercury species in the groundwater of a contaminated site[J]. Acta scientiae circumstantiae,2020 ,40 (7 ):2502 −2510 . (in Chinese with English abstract)[9] BARRINGER J L, SZABO Z, SCHNEIDER D, et al . mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain[J]. Science of the Total Environment,2006 ,361 (1/2/3 ):144 −162 .[10] CALDER R S D, SCHARTUP A T, LI Miling, et al . Future impacts of hydroelectric power development on methylmercury exposures of Canadian indigenous communities[J]. Environmental Science & Technology,2016 ,50 (23 ):13115 −13122 .[11] doi: 10.1016/j.jconhyd.2015.07.002SUN Hongbing, ALEXANDER J, GOVE B, et al . Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application[J]. Journal of Contaminant Hydrology,2015 ,180 :12 −24 .[12] World Health Organization. Guideline for drinking-water quality[M]. Geneva: World Health Organization, 2011. [13] doi: 10.1080/10408440600845619CLARKSON T W, MAGOS L . The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology,2006 ,36 (8 ):609 −662 .[14] BOLLEN A, WENKE A, BIESTER H. mercury speciation analyses in HgCl2-contaminated soils and groundwater--implications for risk assessment and remediation strategies[J]. Water Research, 2008, 42(1/2): 91 − 100. [15] HAITZER M, AIKEN G R, RYAN J N . Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances[J]. Environmental Science & Technology,2003 ,37 (11 ):2436 −2441 .[16] RICHARD J H, BISCHOFF C, BIESTER H . Comparing modeled and measured mercury speciation in contaminated groundwater: Importance of dissolved organic matter composition[J]. Environmental Science & Technology,2016 ,50 (14 ):7508 −7516 .[17] doi: 10.1016/j.jhazmat.2012.04.035WANG Jianxu, FENG Xinbin, ANDERSON C W N, et al . Remediation of mercury contaminated sites - A review[J]. Journal of Hazardous Materials,2012 ,221/222 :1 −18 .[18] doi: 10.3866/PKU.WHXB20100736戈芳, 曹瑞国, 朱斌, 等 . 检测痕量Hg2+的DNA电化学生物传感器[J]. 物理化学学报,2010 ,26 (7 ):1779 −1783 . doi: 10.3866/PKU.WHXB20100736GE Fang, CAO Ruiguo, ZHU Bin, et al . DNA electrochemical biosensor for trace Hg2+ detection[J]. Acta Physico-Chimica Sinica,2010 ,26 (7 ):1779 −1783 . (in Chinese with English abstract)[19] doi: 10.1016/j.sab.2010.12.003JIA Xiaoyu, HAN Yi, LIU Xinli, et al . Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic spectroscopy,2011 ,66 (1 ):88 −92 .[20] 王成, 高倩, 张凌恺, 等 . 基于专利分析的生物传感器发展态势研究[J]. 中国生物工程杂志,2022 ,42 (9 ):124 −132 .WANG Cheng, GAO Qian, ZHANG Lingkai, et al . Development trend of biosensors based on patent analysis[J]. China Biotechnology,2022 ,42 (9 ):124 −132 . (in Chinese with English abstract)[21] doi: 10.1016/S0165-9936(03)00407-2YU Liping, YAN Xiuping . Factors affecting the stability of inorganic and methylmercury during sample storage[J]. TrAC Trends in Analytical Chemistry,2003 ,22 (4 ):245 −253 .[22] 马莉萍, 李云霞, 聂莹莹, 等 . 基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测[J]. 中国生物工程杂志,2023 ,43 (7 ):53 −59 .MA Liping, LI Yunxia, NIE Yingying, et al . Oligonucleotide-based biosenser for highly sensitive detection of Hg2+ in aqueous solution[J]. China Biotechnology,2023 ,43 (7 ):53 −59 . (in Chinese with English abstract)[23] doi: 10.1021/ja106098jDAVE N, CHAN M Y, HUANG P J J, et al . Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water[J]. Journal of the American Chemical Society,2010 ,132 (36 ):12668 −12673 .[24] doi: 10.1021/acsomega.9b00205GUPTA S, SARKAR S, KATRANIDIS A, et al . Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: A plasmid DNA-based approach[J]. ACS Omega,2019 ,4 (5 ):9480 −9487 .[25] doi: 10.1016/j.talanta.2018.08.086XIA Ni, FENG Fan, LIU Cheng, et al . The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer[J]. Talanta,2019 ,192 :500 −507 .[26] JOSEPH K A, DAVE N, LIU Juewen . Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection[J]. ACS Applied Materials & Interfaces,2011 ,3 (3 ):733 −739 .[27] doi: 10.1016/j.bios.2016.08.033ZHOU Wenhu, DING Jinsong, LIU Juewen . 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver[J]. Biosensors and Bioelectronics,2017 ,87 :171 −177 .[28] doi: 10.1016/j.jhazmat.2019.121572PI Kunfu, LIU Juewen, VAN CAPPELLEN P . A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition[J]. Journal of Hazardous Materials,2020 ,385 :121572 .[29] PI Kunfu, LIU Juewen, VAN CAPPELLEN P . Direct measurement of aqueous mercury(II): Combining DNA-based sensing with diffusive gradients in thin films[J]. Environmental Science & Technology,2020 ,54 (21 ):13680 −13689 .[30] doi: 10.1016/j.jglr.2012.06.010CHAPRA S C, DOVE A, WARREN G J . Long-term trends of Great Lakes major ion chemistry[J]. Journal of Great Lakes Research,2012 ,38 (3 ):550 −560 .[31] doi: 10.1139/f98-038ROTT E, DUTHIE H C, PIPP E . Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms[J]. Canadian Journal of Fisheries and Aquatic Sciences,1998 ,55 (6 ):1443 −1453 .[32] JYRKAMA M I, SYKES J F . The impact of climate change on spatially varying groundwater recharge in the Grand River Watershed (Ontario)[J]. Journal of Hydrology,2007 ,338 (3/4 ):237 −250 .[33] doi: 10.1016/j.apgeochem.2020.104794PRIEBE E H, FRAPE S K, JACKSON R E, et al . Tracing recharge and groundwater evolution in a glaciated, regional-scale carbonate bedrock aquifer system, southern Ontario, Canada[J]. Applied Geochemistry,2021 ,124 :104794 .[34] EASTON R M, CARTER T R. Extension of grenville basement beneath southwestern Ontario, rock types and tectonic subdivisions[R]. OFM0162. Ontario Geological Survey, 1991. [35] doi: 10.1021/ja056354dMIYAKE Y, TOGASHI H, TASHIRO M, et al . MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes[J]. Journal of the American Chemical Society,2006 ,128 (7 ):2172 −2173 .[36] doi: 10.1071/EN11084DAVISON W, ZHANG Hao . Progress in understanding the use of diffusive gradients in thin films (DGT)-back to basics[J]. Environmental Chemistry,2012 ,9 (1 ):1 −13 .[37] doi: 10.1016/j.watres.2020.115859PI Kunfu, XIE Xianjun, MA Teng, et al . Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation[J]. Water Research,2020 ,181 :115859 .[38] doi: 10.1016/S0883-2927(99)00097-9VIOLLIER E, INGLETT P W, HUNTER K, et al . The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters[J]. Applied Geochemistry,2000 ,15 (6 ):785 −790 .[39] doi: 10.4319/lo.1969.14.3.0454CLINE J D . Spectrophotometric determination of Hydrogen sulfide in natural waters[J]. Limnology and Oceanography,1969 ,14 (3 ):454 −458 .[40] NESSLER J . Colorimetric determination of ammonia by Nessler reagent[J]. Chemisches Zentralblatt,1856 ,27 :529 −541 .[41] EPA. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry[R]. EPA-821-R-02-019, 2002. [42] PARKHURST D L, APPELO C. Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[Z]. 2013. [43] doi: 10.1016/j.jhazmat.2011.07.021DI NATALE F, ERTO A, LANCIA A, et al . Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides[J]. Journal of Hazardous Materials,2011 ,192 (3 ):1842 −1850 .[44] doi: 10.1071/EN11016TIPPING E, LOFTS S, SONKE J . Humic Ion-Binding model VII: A revised parameterisation of cation-binding by humic substances[J]. Environmental Chemistry,2011 ,8 (3 ):225 −235 .[45] doi: 10.1016/j.chemosphere.2011.07.080FERNÁNDEZ-GÓMEZ C, DIMOCK B, HINTELMANN H, et al . Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays[J]. Chemosphere,2011 ,85 (9 ):1452 −1457 .[46] HONG Y S, RIFKIN E, BOUWER E J . Combination of diffusive gradient in a thin film probe and IC-ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in oxic water[J]. Environmental Science & Technology,2011 ,45 (15 ):6429 −6436 .[47] doi: 10.1021/ac0004097ZHANG H, DAVISON W . Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films[J]. Analytical Chemistry,2000 ,72 (18 ):4447 −4457 .[48] doi: 10.1016/j.talanta.2004.08.054DOČEKALOVÁ H, DIVIŠ P . Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems[J]. Talanta,2005 ,65 (5 ):1174 −1178 .[49] doi: 10.1016/j.aca.2014.02.013PELCOVÁ P, DOČEKALOVÁ H, KLECKEROVÁ A . Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters[J]. Analytica Chimica Acta,2014 ,819 :42 −48 .[50] MILLER C L, SOUTHWORTH G, BROOKS S, et al . Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment[J]. Environmental Science & Technology,2009 ,43 (22 ):8548 −8553 .[51] doi: 10.1016/j.envpol.2010.03.027TIPPING E, LOFTS S, HOOPER H, et al . Critical limits for Hg(II) in soils, derived from chronic toxicity data[J]. Environmental Pollution,2010 ,158 (7 ):2465 −2471 .[52] LOREDO J, LUQUE C, IGLESIAS J G . Conditions of formation of mercury deposits from the Cantabrian zone (Spain)[J]. Bulletin de Minéralogie,1988 ,111 (3/4 ):393 −400 .[53] GRASSI S, NETTI R . Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy)[J]. Journal of Hydrology,2000 ,237 (3/4 ):198 −211 .[54] doi: 10.1016/S0043-1354(00)00423-1LU X, JAFFE R . Interaction between Hg(II) and natural dissolved organic matter: A fluorescence spectroscopy based study[J]. Water Research,2001 ,35 (7 ):1793 −1803 .[55] SCHAEFER M V, YING S C, BENNER S G, et al . Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J]. Environmental Science & Technology,2016 ,50 (7 ):3521 −3529 . -