中国地质环境监测院
中国地质灾害防治工程行业协会
主办

时序数据库技术在贵州地质灾害监测设备运行维护调度平台中的应用

张家勇, 刘黔云, 邓卫卫, 龚伟, 张楠, 李程, 李潇, 胡屿. 2020. 时序数据库技术在贵州地质灾害监测设备运行维护调度平台中的应用. 中国地质灾害与防治学报, 31(5): 117-122. doi: 10.16031/j.cnki.issn.1003-8035.2020.05.16
引用本文: 张家勇, 刘黔云, 邓卫卫, 龚伟, 张楠, 李程, 李潇, 胡屿. 2020. 时序数据库技术在贵州地质灾害监测设备运行维护调度平台中的应用. 中国地质灾害与防治学报, 31(5): 117-122. doi: 10.16031/j.cnki.issn.1003-8035.2020.05.16
ZHANG Jiayong, LIU Qianyun, DENG Weiwei, GONG Wei, ZHANG Nan, LI Cheng, LI Xiao, HU Yu. 2020. Application of time series database in Guizhou Province geological disaster monitoring equipment operation maintenance scheduling platform. The Chinese Journal of Geological Hazard and Control, 31(5): 117-122. doi: 10.16031/j.cnki.issn.1003-8035.2020.05.16
Citation: ZHANG Jiayong, LIU Qianyun, DENG Weiwei, GONG Wei, ZHANG Nan, LI Cheng, LI Xiao, HU Yu. 2020. Application of time series database in Guizhou Province geological disaster monitoring equipment operation maintenance scheduling platform. The Chinese Journal of Geological Hazard and Control, 31(5): 117-122. doi: 10.16031/j.cnki.issn.1003-8035.2020.05.16

时序数据库技术在贵州地质灾害监测设备运行维护调度平台中的应用

  • 基金项目:

    贵州省地质灾害防治综合体系:贵州地质灾害变形分析与预警关键技术研究(贵科合平台人才[2017]5402号)

详细信息
    作者简介: 张家勇(1981-),男,贵州开阳人,硕士,高级工程师,主研领域为地学大数据分析应用与可视化研究。E-mail:75766880@qq.com
  • 中图分类号: P694

Application of time series database in Guizhou Province geological disaster monitoring equipment operation maintenance scheduling platform

  • 本文分析了目前贵州省地质灾害监测设备运行维护调度平台对海量时空监测数据的存储和访问需求,提出了引入时序数据库技术来解决传统数据库在处理海量运维调度数据时碰到的存储容量和访问效率方面问题的解决方案。基于时序数据库技术对贵州省地质灾害监测设备运行维护调度平台进行升级和重构,取得显著成效。
  • 加载中
  • [1]

    何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6):1081-1090.[HE M C. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1081-1090.(in Chinese)]

    [2]

    冯红伟. 数据挖掘技术的研究及应用[D]. 西安:西北工业大学, 2002.[FENG H W.Research and application of data mining technology[D].Xi'an:Northwestern Polytechnical University, 2002.(in Chinese)]

    [3]

    贾澎涛, 何华灿, 刘丽, 等. 时间序列数据挖掘综述[J]. 计算机应用研究, 2007, 24(11):15-18.[JIA P T, HE H C, LIU L, et al. Overview of time series data mining[J]. Application Research of Computers, 2007, 24(11):15-18.(in Chinese)]

    [4]

    吕炳潮, 杨扬, 伍民友. 实时信息的理论研究及应用[J]. 计算机工程与设计, 2010, 31(18):4012-4014.[LYU B C, YANG Y, WU M Y.Research on theory of real-time information and application[J]. Computer Engineering and Design, 2010, 31(18):4012-4014.(in Chinese)]

    [5]

    王洪辉, 李鄢, 庹先国, 等. 地质灾害物联网监测系统研制及贵州实践[J]. 中国测试, 2017, 43(9):94-99.[WANG H H, LI Y, TUO X G, et al. Development of geological hazards monitoring system based on IoT andapplication in Guizhou Province[J]. China Measurement & Testing, 2017, 43(9):94-99.(in Chinese)]

    [6]

    张宏斌. 地质灾害综合监测数据库设计[J]. 电子技术与软件工程, 2019(18):175-176.[ZHANG H B..Design of comprehensive monitoring database for geological hazards[J]. Electronic Technology & Software Engineering, 2019(18):175-176.(in Chinese)]

    [7]

    STRUCKOV A, YUFA S M, VISHERATIN A A, et al. Evaluation of modern tools and techniques for storing time-series data[J]. Procedia Computer Science, 2019, 156:19-28.

    [8]

    Information Technology; Studies Conducted by C. Li et al on Information Technology Recently Reported (FluteDB:An efficient and scalable in-memory time series database for sensor-cloud)[J]. Computers, Networks & Communications,2018

  • 加载中
计量
  • 文章访问数:  457
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2020-04-27
修回日期:  2020-07-16

目录