Characteristics of in-situ stress field and fuzzy comprehensive evaluation of the influence of active faults on the water diversion engineering of Xianglushan Tunnel Area in central Yunnan
-
摘要: 在滇中香炉山引水隧洞工程区活动断裂部位开展了八个钻孔的水压致裂原地应力测试工作。结果显示工程区应力状态以水平应力为主导,龙蟠-乔后断裂和丽江-剑川断裂部位均为走滑应力状态,鹤庆-洱源断裂西支为走滑应力状态,南段为逆冲应力状态。从应力累积的角度分析,测深范围内三条活动断裂大部分测点实测最大主应力值未超过使断层产生滑动失稳的临界值。地应力测试获得的最大主应力优势方位NNE-NE向与利用该地区震源机制解反演得到的现今构造应力场主压应力方位NEE向存在差异,说明地应力测试结果在一定程度上受到了断层活动性的影响。考虑活动断裂形变和力学属性的多个指标参数,对活动断裂影响程度的Fuzzy-Grey模糊综合评价表明龙蟠-乔后断裂对香炉山隧洞工程的影响较弱,丽江-剑川断裂的影响程度最强,需引起重视。
-
关键词:
- 地应力 /
- 活动断裂 /
- 应力累积 /
- 稳定性 /
- Fuzzy-Grey综合评价
Abstract: In-situ stress testing of eight boreholes by hydraulic fracturing was carried out at the active fault zone of Xianglushan Tunnel engineering area of water diversion project in central Yunnan. The results show that the horizontal tectonic stress plays a dominant role in engineering area. The stress regimes in Longpan-Qiaohou Fault and Lijiang-Jianchuan Fault area are of strike-slip faulting. The stress regimes in west branch and south segment of Heqing-Eryuan Fault area are strike-slip and reverse faulting, respectively. From the standpoint of stress accumulation, the measured maximum principal stresses at most test points of the three active faults within the detection range do not exceed the thresholds that cause the slipping instability of the fault. There is a difference between the dominant direction NNE-NE of the measured maximum horizontal principal stresses obtained by in-situ stress test and the NEE direction of the principal compressive stress of the current tectonic stress field obtained from the inversion of focal mechanismin this area, indicating that the measured in-situ stresses have been influenced to a certain extent by fault activities. Taking account of multiple index parameters of active fault deformation and mechanical properties, the Fuzzy-Grey comprehensive evaluation of the influence of active faults shows that the influence of Longpan-Qiaohou fault on tunnel engineering is weak and Lijiang-Jianchuan Fault is the strongest, which should arouse more attention.-
Key words:
- in-situ stress /
- active fault /
- stress accumulation /
- stability /
- Fuzzy-Grey comprehensive evaluation
-
-
[1] ZOBACK M D, TOWNEND J, GROLLIMUND B. Steady-state failure equilibrium and deformation of intraplate lithosphere[J]. International Geology Review, 2002, 44(5):383-401.
[2] 安其美, 丁立丰, 王海忠, 等. 龙门山断裂带的性质与活动性研究[J]. 大地测量与地球动力学, 2004, 24(2):115-119.[AN Q M, DING L F, WANG H Z, et al. Research of property and activity of Longmen mountain fault zone[J]. Journal of Geodesy and Geodynamics, 2004, 24(2):115-119.(in Chinese)]
[3] CHOI S O, LEE B J, SHIN H S. Geological and geotechnical investigation on in situ stress regime around the Yangsan Fault Zone in Korea[J]. Tunnelling and Underground Space Technology, 2006, 21(3):243.
[4] PHAM C, CHANG C D, JANG Y, et al. Effect of faults and rock physical properties on in situ stress within highly heterogeneous carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 185:106601.
[5] 郭啟良, 王成虎, 马洪生, 等. 汶川MS8.0级大震前后的水压致裂原地应力测量[J]. 地球物理学报, 2009, 52(5):1395-1401.[GUO Q L, WANG C H, MA H S, et al. In-situ hydro-fracture stress measurement before and after the Wenchuan Ms8.0 earthquake of China[J]. Chinese Journal of Geophysics, 2009, 52(5):1395-1401.(in Chinese)]
[6] 陈群策, 丰成君, 孟文, 等. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 2012, 55(12):3923-3932.[CHEN Q C, FENG C J, MENG W, et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(12):3923-3932.(in Chinese)]
[7] 丰成君, 陈群策, 谭成轩, 等. 汶川MS8.0地震对龙门山断裂带附近地应力环境影响初探——以北川、江油地区为例[J]. 地震学报, 2013, 35(2):137-150.[FENG C J, CHEN Q C, TAN C X, et al. A preliminary study of the influence of Wenchuan MS8.0 earthquake on in situ stress state near Longmenshan fault zone:a case study in Beichuan and Jiangyou areas[J]. Acta Seismologica Sinica, 2013, 35(2):137-150.(in Chinese)]
[8] WU M L, ZHANG C Y, FAN T Y. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the M s 7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 2016, 121:9-19.
[9] LI P, CAI M F. Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2018, 166:66-79.
[10] LI P, REN F H, CAI M F, et al. Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions[J]. Journal of Asian Earth Sciences, 2019, 185:104007.
[11] BAOUCHE R, SEN S, BOUTALEB K. Present day In-situ stress magnitude and orientation of horizontal stress components in the eastern Illizi basin, Algeria:a geomechanical modeling[J]. Journal of Structural Geology, 2020, 132:103975.
[12] 苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及其工程应用[M]. 北京:科学出版社, 2002.[SU S R, HUANG R Q, WANG S T. Effect of fractures on rock stress and its application in geological engineering[M]. Beijing:Science Press, 2002.(in Chinese)]
[13] 陈化然, 陈连旺, 马宏生, 等. 川滇地区应力场演化与强震间相互作用的三维有限元模拟[J]. 地震学报, 2004, 26(6):567-575.[CHEN H R, CHEN L W, MA H S, et al. 3-d finite element modeling for evolution of stress field and interaction among strong earthquakes in Sichuan-Yunnan region[J]. Acta Seismologica Sinica, 2004, 26(6):567-575.(in Chinese)]
[14] 陈连旺, 詹自敏. 华北地区构造应力场年动态变化特征的数值模拟[J]. 大地测量与地球动力学, 2011, 31(6):1-5.[CHEN L W, ZHAN Z M. Numerically modeling of annual change of tectonic stress filed in North China[J]. Journal of Geodesy and Geodynamics, 2011, 31(6):1-5.(in Chinese)]
[15] YIN S, XIE R C, WU Z H, et al. In situ stress heterogeneity in a highly developed strike-slip fault zone and its effect on the distribution of tight gases:a 3D finite element simulation study[J]. Marine and Petroleum Geology, 2019, 99:75-91.
[16] 周伟, 李延兴, 张静华, 等. 川滇地区现今构造变形分析[J]. 大地测量与地球动力学, 2008, 28(2):22-27.[ZHOU W, LI Y X, ZHANG J H, et al. Analysis of present-day tectonic deformation in sichan-Yunnan area[J]. Journal of Geodesy and Geodynamics, 2008, 28(2):22-27.(in Chinese)]
[17] 黄小巾, 吴中海, 李家存, 等. 滇西北裂陷带的构造地貌特征与第四纪构造活动性[J]. 地质通报, 2014, 33(4):578-593.[HUANG X J, WU Z H, LI J C, et al. Tectonic geomorphology and quaternary tectonic activity in the northwest Yunnan rift zone[J]. Geologcal Bulletin of China, 2014, 33(4):578-593.(in Chinese)]
[18] 房艳国, 罗文行, 叶浩, 等. 鹤庆-洱源断裂晚第四纪活动特征及对滇中引水工程的影响[J]. 华南地震, 2019, 39(3):6-13.[FANG Y G, LUO W X, YE H, et al. Late quaternary activity of Heqing-Eryuan fault and its impact on water diversion project in the central Yunnan[J]. South China Journal of Seismology, 2019, 39(3):6-13.(in Chinese)]
[19] 刘允芳, 尹健民, 刘元坤. 地应力测量方法和工程应用[M]. 武汉:湖北科学技术出版社, 2014.[LIU Y F, YIN J M, LIU Y K. Geostress measurement methods and engineering application[M]. Wuhan:Hubei Science & Technology Press, 2014.(in Chinese)]
[20] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2007.
[21] BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics PAGEOPH, 1978, 116(4/5):615-626.
[22] 苏恺之, 李方全, 张伯崇, 等. 长江三峡坝区地壳应力与孔隙水压力综合研究[M]. 北京:地震出版社, 1996.[SU K Z, LI F Q, ZHANG B C, et al. Integrated research on the stress field and pore pressure at the Three Gorges site[M]. Beijing:Seismological Press, 1996.(in Chinese)]
[23] TOWNEND J, ZOBACK M D. How faulting keeps the crust strong[J]. Geology, 2000, 28(5):399-402.
[24] 徐彦. 云南地区ML3.0级以上中小地震震源机制解汇编:2008~2012[M]. 昆明:云南科技出版社, 2013.[XU Y. Compilation of focal mechanism solutions of mediumand small earthquakes above ML3.0 in Yunnan[M]. Kunming:Yunnan Science and Technology Press, 2013.(in Chinese)]
[25] 祁英弟, 靳春玲, 贡力. 基于ANP-KL-TOPSIS法的铁路隧道围岩安全性评价[J]. 中国地质灾害与防治学报, 2019, 30(4):54-60.[QI Y D, JIN C L, GONG L. Safety evaluation of railway tunnel surrounding rock based on ANP-KL-TOPSIS Method[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(4):54-60.(in Chinese)]
[26] 陈鹏宇, 余宏明, 师华鹏. 基于权重反分析和标准化模糊综合评价的岩爆预测模型[J]. 岩石力学与工程学报, 2014, 33(10):2154-2160.[CHEN P Y, YU H M, SHI H P. Prediction model for rockburst based on weighted back analysis and standardized fuzzy comprehensive evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10):2154-2160.(in Chinese)]
[27] LAI C G, CHEN X H, CHEN X Y, et al. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory[J]. Natural Hazards, 2015, 77(2):1243-1259.
[28] 尚慧, 王明轩, 罗东海, 等. 基于函数赋值模型与模糊综合评判法的单沟泥石流危险性评价[J]. 中国地质灾害与防治学报, 2019, 30(1):61-69.[SHANG H, WANG M X, LUO D H, et al. Single gully debris flow hazard assessment based on function assignment model and fuzzy comprehensive evaluation method[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1):61-69.(in Chinese)]
[29] LIANG X D, CHEN R, WU X L, et al. Improved fuzzy comprehensive evaluation with AHP in construction risk assessment:a case study of tunnel boring machine at high altitude[J]. Proceedings of the Twelfth International Conference on Management Science and Engineering Management, 2019:Springer, Cham.
[30] 王欣, 赵其华, 张朝俊, 等. 基于组合权重的金阳县生态地质环境承载力评价[J]. 水利与建筑工程学报, 2019, 17(6):29-35.[WANG X, ZHAO Q H, ZHANG C J, et al. Ecological geological environment carrying capacity evaluation of Jinyang county based on combined weight method[J].Journal of Water Resources and Architectural Engineering, 2019, 17(6):29-35.(in Chinese)]
[31] 韩军, 张宏伟. 地质动力区划中断裂活动性的模糊综合评判[J]. 中国地质灾害与防治学报, 2007, 18(2):101-105.[HAN J, ZHANG H W. Fuzzy integrated estimation of fault activity in geology dynamic zoning[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(2):101-105.(in Chinese)]
[32] 孙芳强, 苏生瑞, 彭建兵. 西安地区活动断裂活动性的Fuzzy-Grey模式评价[J]. 工程地质学报, 2010, 18(2):183-188.[SUN F Q, SU S R, PENG J B. Fuzzy-grey model assessment for activity of faults in Xi'an[J]. Journal of Engineering Geology, 2010, 18(2):183-188.(in Chinese)]
[33] 房艳国, 龚成, 杨捷, 等. 滇中引水工程区域活动断裂地质学初步研究报告[R]. 武汉:长江勘测规划设计研究院, 2015.[FANG Y G, GONG C, YANG J, et al. Preliminary geology research report on active faults in water diversion project in central Yunnan[R]. Wuhan:Changjiang Institute of Survey, Planning, Design and Research, 2015.(in Chinese)]
[34] 刘俊娟, 王炜, 程琳. 基于梯形隶属函数的区间数模糊评价方法[J]. 系统工程与电子技术, 2009, 31(2):390-392.[LIU J J, WANG W, CHENG L. Interval number fuzzy evaluation based on trapezoid subordinate function[J]. Systems Engineering and Electronics, 2009, 31(2):390-392.(in Chinese)]
-
计量
- 文章访问数: 881
- PDF下载数: 81
- 施引文献: 0