中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于支持向量机的膨胀土胀缩等级预测

周苏华, 周帅康, 张运强, 聂志红, 雷瑜. 基于支持向量机的膨胀土胀缩等级预测[J]. 中国地质灾害与防治学报, 2021, 32(1): 117-126. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.16
引用本文: 周苏华, 周帅康, 张运强, 聂志红, 雷瑜. 基于支持向量机的膨胀土胀缩等级预测[J]. 中国地质灾害与防治学报, 2021, 32(1): 117-126. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.16
ZHOU Suhua, ZHOU Shuaikang, ZHANG Yunqiang, NIE Zhihong, LEI Yu. Predicting of swelling-shrinking level of expansive soil using support vector regression[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 117-126. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.16
Citation: ZHOU Suhua, ZHOU Shuaikang, ZHANG Yunqiang, NIE Zhihong, LEI Yu. Predicting of swelling-shrinking level of expansive soil using support vector regression[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 117-126. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.16

基于支持向量机的膨胀土胀缩等级预测

  • 基金项目: 国家自然科学基金青年基金(51708199);中央高校基本科研业务费专项基金(531107050969);贵州省科技支撑计划(2020-4Y047);贵州省交通运输厅科技项目 (2017-143-054);北京市科技计划 (Z181100003918005)
详细信息
    作者简介: 周苏华(1987-),男,博士,助理教授,主要从事边坡地质灾害方面的研究。E-mail:zhousuhua@foxmail.com
  • 中图分类号: U416.1+67

Predicting of swelling-shrinking level of expansive soil using support vector regression

  • 膨胀土的胀缩等级判定对膨胀土地区工程建设具有重要的意义。为此,本文提出了一种基于支持向量回归机(SVR)模型的膨胀土胀缩等级预测方法。基于肯尼亚“蒙内铁路”沿线膨胀土的土工试验数据,以土体自由膨胀率作为预测目标,构建了包含两种不同预测指标体系的膨胀土胀缩等级预测模型。模型I以液限、塑限、塑性指数、3种不同粒径的颗粒含量(< 0.075、0.075~0.25、0.25~0.5)、土的类型为输入参数,模型II以液限、塑限、塑性指数、粒径< 0.075的颗粒含量、土的类型为预测参数。两个模型在预测时采用Linear、Polynomial、RBF和Sigmoid核函数进行训练。结果表明:(1)当预测采样次数达到1000次时,训练模型均趋于稳定;(2)整体而言,模型I的预测精度要优于模型II,模型I中采用RBF核函数建立的模型给出了最高准确率86.6%,其次为Linear核函数(准确率82.9%)和Sigmoid和函数(准确率75.1%)。模型II中采用RBF核函数建立的模型给出了最高准确率77.4%,其次为Linear核函数(准确率74.3%)和Sigmoid和函数(准确率72.9%);(3)采用Linear函数、Sigmoid函数和RBF函数作为核函数模型对44组未知胀缩等级的土样预测时,模型I中三者预测结果相同的数量占比为73%,其余组土样的预测胀缩等级相同或相邻,不存在“越级”现象,模型II中三者预测结果相同的数量占比为68%,不存在“越级”现象。最后,通过与模糊层次分析法评价结果对比,进一步证明了本文研究结果可为肯尼亚等类似地区工程建设中膨胀土的胀缩等级预测和处理提供依据。

  • 加载中
  • 图 1  肯尼亚地质分布及铁路线路图

    Figure 1. 

    图 2  蒙内铁路现场膨胀土土样

    Figure 2. 

    图 3  随机抽取10组训练样本时的预测准确率

    Figure 3. 

    图 4  随机抽取16组训练样本的预测准确率

    Figure 4. 

    图 5  预测准确率随训练样本数量增加时的变化规律

    Figure 5. 

    图 6  三种核函数模型预测的土体自由膨胀率

    Figure 6. 

    图 7  三种核函数模型预测的土体胀缩等级

    Figure 7. 

    表 1  19组已知土体自由膨胀率的土工数据

    Table 1.  Geotechnical data of 19 groups of known soil free expansion rates

    编号土的分类
    (TB 10077-2019)
    76 g锥入土10 mm颗粒组成/%自由膨胀率/%
    液限/%塑限/%塑性指数/%≤0.075(0.075,0.25](0.25,0.5](0.5,2](2,20](20,60]
    1粉砂21.314.56.824.737.619.88.99021
    2黏土7536.438.687.63.73.33.71.70170
    3黏土79.742.437.391.62.61.81.82.20180
    4黏土77.837.640.287.63.93.931.60134
    5黏土61.533.627.975.26.46.77.44.30150
    6黏土62.432.330.177.75.976.33.1093
    7黏土68.232.535.782.86.66.13.70.80120
    8黏土4825.122.973.8119.74.90.6098
    9黏土61.332.32975.86.67.36.73.60127
    10黏土65.534.730.890.92.721.92.5099
    11黏土49.226.722.575.399.46.3/068
    12黏土66.635.231.477.21.60.81.64.314.5111
    13粉砂20.813.67.236.623.820.718.30.6020
    14黏土52.828.82464.111.8128.140100
    15黏土42.923.819.175.79.19.45.40.4042
    16黏土53.527.625.967.29.612.39.31.60125
    17黏土44.826.318.579.49.17.54/032
    18黏土55.929.92679.48.46.33.52.4076
    19粉质黏土32.617.115.574.911.18.24.61.2039
    下载: 导出CSV

    表 2  44组未知土体自由膨胀率的土工数据(部分)

    Table 2.  Geotechnical data of 44 groups of unknown soil free expansion rates (Partial data)

    编号土的分类
    (TB 10077-2019)
    76 g锥入土10 mm颗粒组成/%
    液限/%塑限/%塑性指数/%≤ 0.075(0.075,0.25](0.25,0.5](0.5,2](2,20](20,60]
    1粉质黏土25.514.710.850.921.817.28.61.50
    2粉砂19.812.67.227.928.024.111.88.20
    3黏土74.936.538.491.92.92.82.10.30
    4黏土59.730.828.965.410.411.67.84.80
    5黏土52.328.324.062.814.514.76.81.20
    6黏土53.927.326.678.76.66.54.63.60
    7黏土54.226.327.968.49.58.76.76.70
    42粉质黏土31.418.612.866.015.813.84.400
    43粉质黏土34.921.413.568.914.011.85.300
    44粉质黏土34.420.813.670.213.710.54.90.70
    下载: 导出CSV

    表 3  膨胀土的胀缩等级分类

    Table 3.  Classification of expansion and contraction grades of expansive soil

    自由膨胀率/%胀缩等级
    下载: 导出CSV

    表 4  土的各参数与自由膨胀率之间的相关性

    Table 4.  Correlation between various parameters of soil and free expansion rate

    参数
    相关性
    76 g锥入土10 mm颗粒组成/%
    液限/%塑限/%塑性指数/%≤0.075(0.075,0.25](0.25,0.5](0.5,2](2,20](20,60]
    R0.890*0.875*0.883*0.618*−0.664*−0.652*−0.433−0.1150.080
      注:*表示在0.01的显著性水平上相关性极显著。
    下载: 导出CSV

    表 5  不同抽取样本数量下的样本组合数

    Table 5.  Number of sample combinations under different sample sizes

    抽取样本数量l/组101112131415161718
    样本组合/种9237875582503882713211628387696917119
    下载: 导出CSV

    表 6  44组土样的胀缩等级预测及评价结果

    Table 6.  Prediction results and evaluation results of swelling and shrinking grades of 44 groups of soil samples

    土样编号123456789101112131415
    胀缩等级方案一
    方案二
    模糊评价
    土样编号161718192021222324252627282930
    胀缩等级方案一
    方案二
    模糊评价
    土样编号3132333435363738394041424344
    胀缩等级方案一
    方案二
    模糊评价
    下载: 导出CSV
  • [1]

    CHENG Y Z, HUANG X M. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils[J]. Applied Sciences,2018,9(1):30. doi: 10.3390/app9010030

    [2]

    徐锴, 耿之周, 李雄威. 脱湿速率对膨胀土堑坡稳定性的影响分析[J]. 岩土工程学报, 2017, 39(增刊1): 131-134.

    XU Kai, GENG Zhizhou, LI Xiongwei. Influence of different drying rates on stability of cut slope of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup1): 131-134. (in Chinese with English abstract)

    [3]

    尹鑫, 王迎超, 高杰, 等. 基于直觉模糊集的膨胀土胀缩性评价[J]. 土木工程学报,2018,51(5):103 − 111. [YIN Xin, WANG Yingchao, GAO Jie, et al. Evaluation on the swelling-shrinkage of expansive soil based on intuitionistic fuzzy set[J]. China Civil Engineering Journal,2018,51(5):103 − 111. (in Chinese with English abstract)

    [4]

    孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报,2012,45(5):141 − 161. [KONG Lingwei, CHEN Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal,2012,45(5):141 − 161. (in Chinese with English abstract)

    [5]

    WANG Z B, HUANG B, TAN F, et al. Characteristic analysis on swelling-shrinkage grade of expansive soil[C]//Proceedings of the 2014 International Conference on Mechanics and Civil Engineering. Atlantis Press, 2014.

    [6]

    宫凤强, 李夕兵. 膨胀土胀缩等级分类中的距离判别分析法[J]. 岩土工程学报,2007,29(3):463 − 466. [GONG Fengqiang, LI Xibing. Distance discriminant analysis to the classification of the grade of shrink and expansion for the expansive soils[J]. Chinese Journal of Geotechnical Engineering,2007,29(3):463 − 466. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.03.026

    [7]

    WANG M W, CHEN G Y. A novel coupling model for risk analysis of swell and shrinkage of expansive soils[J]. Computers & Mathematics with Applications,2011,62(7):2854 − 2861.

    [8]

    曾志雄, 田海, 江名金. 基于遗传投影寻踪模型的膨胀土胀缩等级分类[J]. 南水北调与水利科技,2017,15(1):155 − 160. [ZENG Zhixiong, TIAN Hai, JIANG Mingjin. Classification of the swelling-shrinkage grade of expansive soils based on genetic projection pursuit model[J]. South-to-North Water Transfers and Water Science & Technology,2017,15(1):155 − 160. (in Chinese with English abstract)

    [9]

    中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)

    [10]

    黄卫, 钟理. 路基膨胀土胀缩等级的模糊评判[J]. 岩土工程学报,1999,21(4):408 − 413. [HUANG Wei, ZHONG Li. Fuzzy judgment about the grade of shrink and expansion for the expansive soil in the subgrade[J]. Chinese Journal of Geotechnical Engineering,1999,21(4):408 − 413. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1999.04.006

    [11]

    IKIZLER S B, AYTEKIN M, VEKLI M, et al. Prediction of swelling pressures of expansive soils using artificial neural networks[J]. Advances in Engineering Software,2010,41(4):647 − 655. doi: 10.1016/j.advengsoft.2009.12.005

    [12]

    汪明武, 赵奎元, 张立彪. 基于联系期望的膨胀土和改良土胀缩性评价模型[J]. 岩土工程学报,2014,36(8):1553 − 1557. [WANG Mingwu, ZHAO Kuiyuan, ZHANG Libiao. A novel evaluation model based on connectional expectation for swelling-shrinkage grade of untreated and treated expansive clay[J]. Chinese Journal of Geotechnical Engineering,2014,36(8):1553 − 1557. (in Chinese with English abstract) doi: 10.11779/CJGE201408023

    [13]

    汪明武, 金菊良, 李丽. 可拓学在膨胀土胀缩等级评判中的应用[J]. 岩土工程学报,2003,25(6):754 − 757. [WANG Mingwu, JIN Juliang, LI Li. Application of extension method to the evaluation of the grade of shrinkage and expansion for the expansive soil[J]. Chinese Journal of Geotechnical Engineering,2003,25(6):754 − 757. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2003.06.024

    [14]

    VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.

    [15]

    YANG H Y, LIU Y. Methods of support vector machine on classification of expansive soils[J]. Advanced Materials Research,2012,531:562 − 565. doi: 10.4028/www.scientific.net/AMR.531.562

    [16]

    苏治, 傅晓媛. 核主成分遗传算法与SVR选股模型改进[J]. 统计研究,2013,30(5):54 − 62. [SU Zhi, FU Xiaoyuan. Kernel principal component genetic algorithm and improved SVR stock selection model[J]. Statistical Research,2013,30(5):54 − 62. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4565.2013.05.008

    [17]

    张骏, 吴志敏, 潘雨帆, 等. 基于SVR模型的驾驶简单反应时间预测方法[J]. 中国公路学报,2017,30(4):127 − 132. [ZHANG Jun, WU Zhimin, PAN Yufan, et al. Predicting method of simple reaction time of driver based on SVR model[J]. China Journal of Highway and Transport,2017,30(4):127 − 132. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2017.04.015

    [18]

    王芬, 刘阳, 郝建斌, 等. 基于MABC-SVR的边坡安全系数预测模型[J]. 安全与环境工程,2019,26(2):178 − 183. [WANG Fen, LIU Yang, HAO Jianbin, et al. Prediction model of slope safety factor based on MABC-SVR[J]. Safety and Environmental Engineering,2019,26(2):178 − 183. (in Chinese with English abstract)

    [19]

    林荣安, 孙钰丰, 戴振华, 等. 基于RS-SVR的上软下硬地层盾构施工地表沉降预测[J]. 中国公路学报,2018,31(11):130 − 137. [LIN Rongan, SUN Yufeng, DAI Zhenhua, et al. Predicting for ground surface settlement induced. By shield tunneling in upper-soft and lower-hard ground based on RS-SVR[J]. China Journal of Highway and Transport,2018,31(11):130 − 137. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2018.11.014

    [20]

    国家铁路局. 铁路工程岩土分类标准: TB 10077—2019[S]. 北京: 中国铁道出版社, 2019.

    Nation Railway Administration of the People’s Republice of China. Code for Rock and Soil Classfication of Railway Engineering : TB 10077—2019[S]. Beijing: China Railway Publishing House, 2019. (in Chinese)

  • 加载中

(7)

(6)

计量
  • 文章访问数:  760
  • PDF下载数:  133
  • 施引文献:  0
出版历程
收稿日期:  2020-04-06
修回日期:  2020-05-26
刊出日期:  2021-02-25

目录