中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于全卷积神经网络的花岗岩中不同组分分布特征分析

朱楚雄, 徐金明, 钟传江. 基于全卷积神经网络的花岗岩中不同组分分布特征分析[J]. 中国地质灾害与防治学报, 2021, 32(1): 127-134. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.17
引用本文: 朱楚雄, 徐金明, 钟传江. 基于全卷积神经网络的花岗岩中不同组分分布特征分析[J]. 中国地质灾害与防治学报, 2021, 32(1): 127-134. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.17
ZHU Chuxiong, XU Jinming, ZHONG Chuanjiang. Distributions of various compositions in granite specimen using fully convolutional network[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 127-134. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.17
Citation: ZHU Chuxiong, XU Jinming, ZHONG Chuanjiang. Distributions of various compositions in granite specimen using fully convolutional network[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 127-134. doi: 10.16031/j.cnki.issn.1003-8035.2021.01.17

基于全卷积神经网络的花岗岩中不同组分分布特征分析

  • 基金项目: 国家自然科学基金项目(41472254);中国铁建股份有限公司科技研究开发计划项目(17-C13)
详细信息
    作者简介: 朱楚雄(1994-),男,湖南汝城人,硕士,主要从事岩土工程的科研工作。E-mail: zcxiong2017@163.com
    通讯作者: 徐金明(1963-),男,江苏南通人,博士,教授,博士生导师,主要从事工程地质与岩土工程的教学与科研工作。E-mail: xjming@163.com
  • 中图分类号: P642

Distributions of various compositions in granite specimen using fully convolutional network

More Information
  • 岩石中不同组分的分布特征是研究岩石物理力学性质的重要基础。本文以花岗岩为例,使用全卷积神经网络(FCN)和单轴压缩试验视频来研究花岗岩不同组分(裂隙、黑云母、石英、长石)的分布特征。将视频中单帧图像进行灰度转换和像素裁剪后,使用肉眼判定方法将4种组分进行标记并制成基础数据集,建立并训练了相应的FCN,通过对不同卷积层的可视化操作探讨了花岗岩中不同组分的分布情况,研究了整个变形破坏过程岩石中不同组分分布的变化特征,分析了不同组分识别准确率的变化情况及主要因素(网络深度、初始学习率和网络迭代次数)的影响。结果表明,在花岗岩的整个变形破坏过程中,裂隙首先在中部区域萌生、最后纵向贯穿整个岩石表面,黑云母组分分布分散且不断向左上方或右上方移动,石英主要集中在两侧区域,长石主要集中在中间和左上角区域;不同组分识别准确率逐步小幅度下降,准确率大小顺序是裂隙>黑云母>长石>石英;网络深度越深、初始学习率越大、则识别效果越好,迭代次数5000时的识别效果较好。研究结果对使用人工智能技术研究岩石中不同组分分布特征具有一定的参考价值。

  • 加载中
  • 图 1  用于制作数据集的单帧图像

    Figure 1. 

    图 2  花岗岩中不同组分的标签图像

    Figure 2. 

    图 3  不同网络中花岗岩组分的识别过程

    Figure 3. 

    图 4  全卷积神经网络

    Figure 4. 

    图 5  全卷积网络中不同卷积层的可视化结果

    Figure 5. 

    图 6  花岗岩不同组分分布随时间的变化

    Figure 6. 

    图 7  花岗岩中不同组分识别准确率随时间的变化

    Figure 7. 

    表 1  全卷积神经网络的各层参数

    Table 1.  Parameters used in FCN

    层序名称-2603519748500卷积核步长边缘填充像素
    数量大小
    1图像输入层238×238×1
    2卷积层1643×3[1 1][1 1 1 1]
    3ReLU层1
    4最大池化层112×2[2 2][0 0 0 0]
    5卷积层2643×3[1 1][1 1 1 1]
    6ReLU层2
    7卷积层3643×3[1 1][1 1 1 1]
    8ReLU层3
    9卷积层4643×3[1 1][1 1 1 1]
    10ReLU层4
    11卷积层5643×3[1 1][1 1 1 1]
    12ReLU层5
    13最大池化层512×2[2 2][0 0 0 0]
    14转置卷积层1644×4[2 2][-1-1-1-1]
    15ReLU层1_1
    16转置卷积层2644×4[2 2][0 0 0 0]
    17ReLU层2_1
    18全卷积层41×1[1 1][0 0 0 0]
    19Softmax层
    20像素分类层
    21图像输出层238×238×1
    下载: 导出CSV

    表 2  所建FCN的全局准确率计算结果

    Table 2.  Global Accuracies of established FCN

    网络深度网络迭代次数初始学习率r
    0.0010.0020.0040.0060.008
    17层26000.8470.8480.8550.8630.871
    50000.8490.8540.8730.8640.887
    66000.8510.8550.8570.8640.874
    19层26000.8490.8570.8640.8660.874
    50000.8510.8630.8840.8780.894
    66000.8540.8610.8740.8690.877
    21层26000.8480.8600.8740.8810.875
    50000.8470.8660.8910.8960.900
    66000.8550.8750.8820.8800.883
    下载: 导出CSV
  • [1]

    徐永进, 滕奇志, 吴晓红, 等. 利用层间相关性的岩心CT图像半自动分割方法[J]. 中国图象图形学报,2015,20(10):1340 − 1345. [XU Yongjin, TENG Qizhi, WU Xiaohong, et al. Semi-segmentation of rock CT images using the correlation of adjacent frames[J]. Journal of Image and Graphics,2015,20(10):1340 − 1345. (in Chinese with English abstract) doi: 10.11834/jig.20151007

    [2]

    张嘉凡, 张雪娇, 杨更社, 等. 基于聚类算法的岩石CT图像分割及量化方法[J]. 西安科技大学学报,2016,36(2):171 − 175. [ZHANG Jiafan, ZHANG Xuejiao, YANG Gengshe, et al. A method of rock CT image segmentation and quantification based on clustering algorithm[J]. Journal of Xi'an University of Science and Technology,2016,36(2):171 − 175. (in Chinese with English abstract)

    [3]

    钱庆波, 徐金明, 黄继忠. 基于PFC2D的花岗岩新生裂隙萌生扩展过程分析[J]. 中国地质灾害与防治学报,2019,30(5):122 − 130. [QIAN Qingbo, XU Jinming, HUANG Jizhong. Analysis on the initiation and propagation of newly-generated cracks in granite using PFC2D[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):122 − 130. (in Chinese with English abstract)

    [4]

    朱赛楠, 李滨, 冯振. 三峡库区侏罗系泥岩CT损伤特性试验研究[J]. 水文地质工程地质,2016,43(1):72 − 78. [ZHU Sainan, LI Bin, FENG Zhen. Research on CT damage characteristics of the Jurassic mudstones in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2016,43(1):72 − 78. (in Chinese with English abstract)

    [5]

    刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报,2018,40(5):925 − 931. [LIU Chun, XU Qiang, SHI Bin, et al. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering,2018,40(5):925 − 931. (in Chinese with English abstract) doi: 10.11779/CJGE201805018

    [6]

    简文星, 余锦风, 任佳, 等. 基于matlab的岩石表面裂纹统计方法[J]. 安全与环境工程,2015,22(5):128 − 133. [JIAN Wenxing, YU Jinfeng, REN Jia, et al. The statistical method of rock surface crack based on Matlab[J]. Safety and Environmental Engineering,2015,22(5):128 − 133. (in Chinese with English abstract)

    [7]

    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84 − 90. doi: 10.1145/3065386

    [8]

    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556[cs. CV]. https://arxiv.org/abs/1409.1556

    [9]

    GIRSHICK R, DONAHUE J, DARRELL T, MALIK J. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Computer Vision and Pattern Recognition, 2014, 580-587.

    [10]

    GIRSHICK R. Fast R-CNN [C]. International Conference on Computer Vision, 2015, 1440-1448.

    [11]

    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137 − 1149. doi: 10.1109/TPAMI.2016.2577031

    [12]

    HE K, GKIOXARI G, DOLLAR P, GIRSHICK R. Mask R-CNN [C]. Computer Vision and Pattern Recognition, 2017, 2961-2969.

    [13]

    LIN T, DOLLAR P, GIRSHICK R, HE K, HARIHARAN B, BELONGIE S. Feature pyramid networks for object detection [C]. Computer Vision and Pattern Recognition, 2017, 2117-2125.

    [14]

    BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481 − 2495. doi: 10.1109/TPAMI.2016.2644615

    [15]

    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]. Computer Vision and Pattern Recognition, 2015, 3431-3440.

    [16]

    王振, 张善文, 王献锋. 基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J]. 江苏农业学报,2019,35(5):1054 − 1060. [WANG Zhen, ZHANG Shanwen, WANG Xianfeng. Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J]. Jiangsu Journal of Agricultural Sciences,2019,35(5):1054 − 1060. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4440.2019.05.008

    [17]

    黄英来, 刘亚檀, 任洪娥. 基于全卷积神经网络的林木图像分割[J]. 计算机工程与应用,2019,55(4):219 − 224. [HUANG Yinglai, LIU Yatan, REN Honge. Segmentation of forest image based on fully convolutional neural network[J]. Computer Engineering and Applications,2019,55(4):219 − 224. (in Chinese) doi: 10.3778/j.issn.1002-8331.1808-0008

    [18]

    RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [C]. Medical image computing and computer assisted intervention, 2015, 234-241.

    [19]

    黄龙, 杨媛, 王庆军, 等. 结合全卷积神经网络的室内场景分割[J]. 中国图象图形学报,2019,24(1):64 − 72. [HUANG Long, YANG Yuan, WANG Qingjun, et al. Indoor scene segmentation based on fully convolutional neural networks[J]. Journal of Image and Graphics,2019,24(1):64 − 72. (in Chinese with English abstract) doi: 10.11834/jig.180364

    [20]

    郑婷月, 唐晨, 雷振坤. 基于全卷积神经网络的多尺度视网膜血管分割[J]. 光学学报,2019,39(2):0211002. [ZHENG Tingyue, TANG Chen, LEI Zhenkun. Multi-scale retinal vessel segmentation based on fully convolutional neural network[J]. Acta Optica Sinica,2019,39(2):0211002. (in Chinese with English abstract) doi: 10.3788/AOS201939.0211002

    [21]

    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278 − 2324. doi: 10.1109/5.726791

  • 加载中

(7)

(2)

计量
  • 文章访问数:  891
  • PDF下载数:  116
  • 施引文献:  0
出版历程
收稿日期:  2019-12-26
修回日期:  2020-02-26
刊出日期:  2021-02-25

目录