Deformation analysis of Sela landslide in the upper reaches of Jinsha River based on MSBAS technology
-
摘要:
金沙江缝合带是滑坡灾害的高发区,且具有较大的堵江威胁。以堵江风险较高的色拉滑坡为研究对象,选取高时间分辨率的升降轨Sentinel-1A/B数据,利用MSBAS InSAR技术对该滑坡展开地表形变监测研究。文章在利用不同轨道的Sentinel-1A/B获取色拉滑坡2018—2020年间的二维动态形变时间序列的基础上,分析了典型特征点形变时间序列特征。结果表明,在2018年1月—2020年4月色拉滑坡东西向累积形变最高达到165 mm,垂直向累积形变达−102 mm,滑坡体形变加速的时间点被成功地捕获。最后,分析了该滑坡的形变趋势,通过现场调查结果验证了所获得滑坡监测结果的准确性。
-
关键词:
- 多维短基线集技术 /
- 相位堆叠InSAR技术 /
- 色拉滑坡 /
- 滑坡识别 /
- 二维分解
Abstract:The Jinshajiang suture zone is a high-incidence area of landslide disasters and has a greater threat of river jamming. In this paper, the Sela landslide with high risk of blocking rivers was taken as the research object, and the Sentinel-1A/B images were selected and processed by MSBAS InSAR technology to obtain the surface deformation of the landslide. We used the Sentinel-1A/B images from different orbits to obtain the two-dimensional dynamic deformation of the Sela landslide from 2018 to 2020. Deformation time series characteristics of typical points are analyzed. The results show that the cumulative deformation in the east-west direction of Sala landslide reached a maximum of 165 mm, and the cumulative deformation in the vertical direction reached −102 mm from January 2018 to April 2020. We studied the deformation trend of the landslide, and the accuracy of the landslide monitoring results was verified by the field survey results.
-
Key words:
- MSBAS /
- stacking InSAR /
- Sela landslide /
- landslide identification /
- two dimensional decomposition
-
-
表 1 研究区SAR数据集主要参数
Table 1. Main parameters of the SAR data sets used in this study
轨道方向 升轨 降轨 轨道号 99 33 入射角 33.8° 39.3° 方位角 −10.4° −170.0° 成像模式 IW宽幅模式 IW宽幅模式 极化方式 VV VV 影像数量 66 64 影像时间间隔ΔT 12 12 影像时间范围 2018年1月—2020年4月 2018年1月—2020年4月 表 2 形变参考区内的形变速率标准差
Table 2. Standard deviation of deformation rate in deformation reference area
/(mm·a−1) SAR数据 平均值 标准差 东西向 −0.489 2.115 垂直向 1.499 1.574 -
[1] 柴贺军, 刘汉超, 张倬元. 中国滑坡堵江事件目录[J]. 地质灾害与环境保护,1995,6(4):1 − 9. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The catalog of Chinese landslide dam events[J]. Journal of Geological Hazards and Enveronment Preservation,1995,6(4):1 − 9. (in Chinese with English abstract)
[2] 刘威, 何思明. 金沙江沃达潜在滑坡诱发灾害链成灾过程数值模拟[J]. 工程科学与技术,2020,52(2):38 − 46. [LIU Wei, HE Siming. Numerical simulation of the evolution process of disaster chain induced by potential landslide in woda of Jinsha River basin[J]. Advanced Engineering Sciences,2020,52(2):38 − 46. (in Chinese with English abstract)
[3] 吴瑞安, 马海善, 张俊才, 等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J/OL]. 水文地质工程地质, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC.
WU Ruian, MA Haishan, ZHANG Juncai, et al. Developmental characteristics and damming river risk of Woda landslide in the upper reaches of the Jinsha River [J]. Hydrogeology & Engineering Geology, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC (in Chinese with English abstract)
[4] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报,2000,18(增刊1):51 − 54. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The temporal-soatial distribution of damming landslides in China[J]. Journal of Mountain Research,2000,18(Sup1):51 − 54. (in Chinese with English abstract)
[5] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报,2017,36(11):2612 − 2628. [XU Qiang, LI Weile, DONG Xiujun, et al. Preliminary study on characteristics and genetic mechanism of landslide in Xinmo Village, Diexi Town, Maoxian County, Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2612 − 2628. (in Chinese with English abstract)
[6] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质,2019,46(2):219 − 234. [LIU Chuanzheng, LYU Jietang, TONG Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China,2019,46(2):219 − 234. (in Chinese with English abstract)
[7] 王群, 张蕴灵, 范景辉, 等. 基于PS-InSAR和offset tracking技术的金沙江白格滑坡形变监测[J]. 大地测量与地球动力学,2020,40(4):340 − 345. [WANG Qun, ZHANG Yunling, FAN Jinghui, et al. Deformation monitoring of the Baige landslide in the Jinsha River using PS-InSAR and offset tracking techniques[J]. Journal of Geodesy and Geodynamics,2020,40(4):340 − 345. (in Chinese with English abstract)
[8] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究: 以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)
[9] 严容. 岷江上游崩滑堵江次生灾害及环境效应研究[D]. 成都: 四川大学, 2006.
YAN Rong. Secondary disaster and environmental effect of landslided and collapsed dams in the upper reaches of Minjiang River[D]. Chengdu: Sichuan University, 2006. (in Chinese with English abstract)
[10] NECULA N, NICULIȚĂ M, FLORIS M, et al. InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the north-easternCopou hillslope, Iaşi city, Romania[C]//Proceedings of the 33rd Romanian Geomorphology Symposium. May 11-14, 2017. Iași, Romania. Iași: Alexandru Ioan Cuza University of Iași Press, 2017: 11-14.
[11] KISELEVA Е, MIKHAILOV V, SMOLYANINOVA E, et al. PS-InSAR monitoring of landslide activity in the black sea coast of the caucasus[J]. Procedia Technology,2014,16:404 − 413. doi: 10.1016/j.protcy.2014.10.106
[12] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology,2006,88(3/4):173 − 199.
[13] 赵富萌, 张毅, 孟兴民, 等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract)
[14] 李壮, 李滨, 高杨, 等. 雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译[J]. 中国地质灾害与防治学报,2021,32(3):33 − 41. [LI Zhuang, LI Bin, GAO Yang, et al. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully, downstream of Yarlung Zangbo River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):33 − 41. (in Chinese with English abstract)
[15] 张成龙, 李振洪, 余琛, 等. 滑坡探测 : GACOS辅助下InSAR Stacking在金沙江流域的应用[J/OL].武汉大学学报(信息科学版): 1−16. https://doi.org/10.13203/j.whugis20200675.
ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection: application of InSAR Stacking assisted by GACOS in Jinsha River Basin [J/OL]. Journal of Wuhan University (Information Science Edition): 1−16. https://doi.org/10.13203/j.whugis20200675. (in Chinese with English abstract)
[16] 康亚. InSAR技术在西南山区滑坡探测与监测的应用[D]. 西安: 长安大学, 2016.
KANG Ya. Landslide detection and monitoring over southwestern mountainous area with InSAR[D]. Xi'an: Chang'an University, 2016. (in Chinese with English abstract)
[17] 高杨, 李滨, 高浩源, 等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslid[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract)
[18] 李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract)
[19] 张文馨. InSAR技术在南屯矿区地面形变监测中的应用研究[D]. 徐州: 中国矿业大学, 2018.
ZHANG Wenxin. Application of InSAR technology in surface deformation monitoring in nantun mining area[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese with English abstract)
[20] 樊晓一, 张睿骁, 胡晓波. 沟谷地形参数对滑坡运动距离的影响研究[J]. 地质力学学报,2020,26(1):106 − 114. [FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo. Study on the influence of valley topographic parameter on the moving distance of landslide[J]. Journal of Geomechanics,2020,26(1):106 − 114. (in Chinese with English abstract)
[21] 苏永华, 蹇宜霖, 张航. 基于滑带软化的滑坡渐进破坏机制分析[J]. 公路工程,2019,44(1):32 − 37. [SHU Yonghua, JIAN Yilin, ZHANG Hang. Analysis of landslide progressive failure mechanism based on sliding zone softening[J]. Highway Engineering,2019,44(1):32 − 37. (in Chinese with English abstract)
[22] 张洋, 汪云甲, 闫世勇. 基于Stacking InSAR技术的沛北矿区沉降监测[J]. 煤炭技术,2016,35(7):102 − 105. [ZHANG Yang, WANG Yunjia, YAN Shiyong. Ground subsidence detection of Peibei mining area based on stacking InSAR technology[J]. Coal Technology,2016,35(7):102 − 105. (in Chinese with English abstract)
[23] DAI K R, LIU G X, LI Z H, et al. Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR[J]. Sensors,2018,18(6):1876. doi: 10.3390/s18061876
[24] SAMSONOV S, D’OREYE N, SMETS B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:142 − 154. doi: 10.1016/j.jag.2012.12.008
[25] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)
-