Dynamic simulation and analysis of “9·20” sliding process of Quwajiasa landslide in the upper reaches of Yellow River
-
摘要:
位于黄河上游的曲哇加萨巨型滑坡1985—2020年间发生多起不同程度的局部滑动,严重威胁国道G227 及下方村民生命和财产安全。以2019年9月20日发生于曲哇加萨老滑坡东北段中前缘的H1滑坡为例,在野外调查、形变数据以及稳定性分析的基础上,研究了该滑坡的变形破坏特征,并通过动力学模拟进一步分析了滑坡的成灾范围,反演分析验证了1号滑面浅层滑坡按照摩擦流变模型运动后,将运动堆积到挡墙至军功路段国道G227和居民区,而预测分析发现欠稳定状态的2号滑面浅层滑坡运动后,将运动堆积到军功路至黄河段居民区,但不至于引起堵塞黄河灾害发生。研究结果可为黄河上游巨型滑坡的运动预测评价方法提供一定参考。
Abstract:Several local landslides occurred in the Quwajiasa giant landslide in the upper reaches of the Yellow River from 1985 to 2020, which seriously threatened the safety of G227 national highway and the housing security of the villagers below. Taking the H1 landslides at the middle front of the northeast section of Quwajiasa landslide on September 20, 2019 as an example, based on the field investigation, deformation data and stability analysis, this paper intends to research the deformation and failure characteristics of the landslide, further analyze the sliding range as it moves through dynamic simulation, and the back analysis validated that after the movement of the No.1 shallow landslide following the Frictional model, it accumulated in the highway G227 and residential area from the retaining wall to Jungong Road, however, the No.2 shallow landslide in unstable state was predicted to accumulat in the residential area from Jungong road to the Yellow River after its movement, which will not block the frontal. The research content of this paper can provide some reference for the evaluation method for dynamic prediction super large landslides in the upper reaches of the Yellow River.
-
Key words:
- landslide /
- deformation and failure /
- dynamic analysis /
- upper reaches of Yellow River
-
-
表 1 模型参数选取
Table 1. Model parameters
模型 内摩擦角/(°) 摩擦系数 湍流系数/(m·s−1) Frictional 16* - - Vollemy 16 0.20 200 注:*表示饱和状态下,内摩擦角直接快剪试验结果为20.3°。 -
[1] 张辉, 尹红. 青海省玛沁县军功H1滑坡地质灾害特征及稳定性评价[J]. 中国战略新兴产业(理论版),2019,13:81 − 82. [ZHANG Hui, YIN Hong. Geological disaster characteristics and stability evaluation of Jungong H1 landslide in Maqin County, Qinghai Province[J]. China Strategic Emerging Industry,2019,13:81 − 82. (in Chinese)
[2] 程柯力, 白慧林, 方宏宇. 青海省军功滑坡变形破坏特征及机理研究[J]. 甘肃水利水电技术,2021,57(1):45 − 51. [CHENG Keli, BAI Huilin, FANG Hongyu. Study on deformation and failure characteristics and mechanism of Jungong landslide in Qinghai Province[J]. Gansu Water Resources and Hydropower Technology,2021,57(1):45 − 51. (in Chinese)
[3] 魏正发, 周保, 魏赛拉加, 等. 降雨条件下玛沁县拉加镇曲哇加萨H1滑坡失稳破坏机理研究[J]. 青海大学学报,2021,39(4):94 − 102. [WEI Zhengfa, ZHOU Bao, WEI S, et al. Study on the failure mechanism of H1 landslide in Quwajiasa, Lajia town, Maqin County under the rainfall[J]. Journal of Qinghai University,2021,39(4):94 − 102. (in Chinese with English abstract)
[4] 林建国. G227线军功山段山体滑坡应急保通方案浅谈[J]. 公路交通科技(应用技术版),2019,15(10):102 − 103. [LIN Jianguo. Brief discussion on emergency maintenance scheme of landslide in Jungongshan section of G227 line[J]. Highway traffic technology (Applied Technology Edition),2019,15(10):102 − 103. (in Chinese)
[5] 程强, 寇小兵, 黄绍槟, 等. 中国红层的分布及地质环境特征[J]. 工程地质学报,2004,12(1):34 − 40. [CHENG Qiang, KOU Xiaobing, HUANG Shaobin, et al. The distributes and geologic environment characteristics of red beds in China[J]. Journal of Engineering Geology,2004,12(1):34 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2004.01.007
[6] 张永康, 李元彪. 青海高原典型红层滑坡病害特性分析[J]. 甘肃科技,2011,27(3):36 − 39. [ZHANG Yongkang, LI Yuanbiao. Disease characteristics analysis of typical red bed landslide in Qinghai Plateau[J]. Gansu Science and Technology,2011,27(3):36 − 39. (in Chinese) doi: 10.3969/j.issn.1000-0952.2011.03.012
[7] 吴红刚, 马惠民, 侯殿英, 等. 青海高原龙穆尔沟红层滑坡变形机制的地质分析与模型试验研究[J]. 岩石力学与工程学报,2010,29(10):2094 − 2102. [WU Honggang, MA Huimin, HOU Dianying, et al. Geological analysis and model experimental study of deformation mechanism of ditch-Moore red bed landslide at Qinghai plateau[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(10):2094 − 2102. (in Chinese with English abstract)
[8] 殷志强, 魏刚, 秦小光, 等. 青藏高原东北缘黄河上游滑坡与堰塞湖研究进展[J]. 地学前缘,2021,28(2):46 − 57. [YIN Zhiqiang, WEI Gang, QIN Xiaoguang, et al. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau[J]. Earth Science Frontiers,2021,28(2):46 − 57. (in Chinese with English abstract)
[9] WANG W P, YIN Y P, LI D H, et al. Numerical simulation study of the load sharing of an arched micropile group in the tizicao high-position landslide, China[J]. IOP Conference Series: Earth and Environmental Science,2020,570(6):062001. doi: 10.1088/1755-1315/570/6/062001
[10] EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(1):69 − 87. doi: 10.1016/S1365-1609(03)00076-5
[11] CHEN G Q, HUANG R Q, XU Q, et al. Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method[J]. Journal of Mountain Science,2013,10(4):532 − 540. doi: 10.1007/s11629-013-2367-4
[12] CHENG Y M, LANSIVAARA T, WEI W B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J]. Computers and Geotechnics,2007,34(3):137 − 150. doi: 10.1016/j.compgeo.2006.10.011
[13] KARL T. Theoretical Soil Mechanics[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 1943.
[14] 李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2020.26.04.048
[15] 殷跃平. 汶川八级地震滑坡特征分析[J]. 工程地质学报,2009,17(1):29 − 38. [YIN Yueping. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):29 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.004
[16] YIN Y P, WANG H D, GAO Y L, et al. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Landslides,2010,7(3):339 − 349. doi: 10.1007/s10346-010-0220-1
[17] YIN Y P, ZHENG W M, LIU Y P, et al. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China[J]. Landslides,2010,7(3):359 − 365. doi: 10.1007/s10346-010-0225-9
[18] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology,2000,27(4):8 − 11. (in Chinese) doi: 10.3969/j.issn.1000-3665.2000.04.003
[19] 李滨, 高杨, 万佳威, 等. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策[J]. 水电与抽水蓄能,2020,6(2):11 − 14. [LI Bin, GAO Yang, WAN Jiawei, et al. The chain of the major geological disasters and related strategies in the Yalu-zangbu River canyon region[J]. Hydropower and Pumped Storage,2020,6(2):11 − 14. (in Chinese with English abstract)
[20] 张远娇, 邢爱国, 朱继良. 汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J]. 上海交通大学学报,2012,46(10):1665 − 1670. [ZHANG Yuanjiao, XING Aiguo, ZHU Jiliang. Dynamics analysis of Niujuangou rockslide-debris avalanche triggered by the Wenchuan earthquake[J]. Journal of Shanghai Jiao Tong University,2012,46(10):1665 − 1670. (in Chinese with English abstract)
[21] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. doi: 10.1139/t95-063
[22] HUNGR O, MCDOUGALL S. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences,2009,35(5):978 − 992.
[23] OUYANG C J, ZHAO W, HE S M, et al. Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China[J]. Journal of Mountain Science,2017,14(9):1701 − 1711. doi: 10.1007/s11629-017-4613-7
[24] SASSA K, NAGAI O, SOLIDUM R, et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides,2010,7(3):219 − 236. doi: 10.1007/s10346-010-0230-z
[25] SASSA K, HE Bin, DANG K, et al. Plenary: progress in landslide dynamics[M]//Landslide Science for a Safer Geoenvironment. Cham: Springer International Publishing, 2014: 37 − 67.
[26] DAVIES T R, MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal,1999,36(2):313 − 320. doi: 10.1139/t98-108
[27] SAVAGE S B, HUTTER K. The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics,1989,199:177 − 215. doi: 10.1017/S0022112089000340
[28] XING A G, WANG G Hi, LI B, et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China[J]. Canadian Geotechnical Journal,2015,52(7):971 − 981. doi: 10.1139/cgj-2014-0122
[29] IVERSON R M, OUYANG Chaojun. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory[J]. Reviews of Geophysics,2015,53(1):27 − 58. doi: 10.1002/2013RG000447
-