Experiment on the effect of forward and reverse rotation speeds of rockfall on normal restitution coefficient
-
摘要:
为探究落石正转和反转转速对法向恢复系数(Rn)的影响,选制正方、圆盘和圆柱三种典型形状试块,通过专门研发的落石碰撞测试装置,开展不同正转和反转转速下试块绕X和Y轴与坡面的碰撞测试。试验结果表明:圆盘和圆柱状试块绕Y轴旋转时(近似正碰),转速对Rn基本无影响;3种形状试块绕X轴旋转时(非正碰),转速和Rn存在一定相关性,但Rn还受到试块形状和冲击姿态联合影响。为此,引入综合变量-冲击姿态系数(IPC)来量化转速对Rn的影响。鉴于不同冲击姿态下法向冲击力对Rn的力学作用机制存在差异,对试块冲击回弹特征采取分类探讨。一次冲击回弹型,正转试验中质心(C)在接触点(CP)之后和C在CP之前条件下,IPC与Rn分别呈线性正相关和负相关关系;反转试验结果则正好相反。二次冲击回弹型,无论正转或反转,第一次冲击C在CP之前或之后,各形状试块IPC与Rn均为强正相关,但各工况下的相关规律并不一致。这些获得的结论基本揭示了转速对Rn的影响关系,同时为转动异形落石冲击回弹过程的精准预测提供了参考。
Abstract:In order to explore the effect of forward and reverse rotation speeds of rockfall on normal restitution coefficient (Rn), three typical blocks of cube, disc and cylinder were customized, and the impact tests of each block with slope at different forward and reverse rotation speeds in X and Y axes were carried out through the specially developed rockfall impact test device. Results show that the rotation speed has no effect on Rn when the disc and the cylinder shaped blocks rotate around the Y-axis (approximately normal impact); when the three shaped blocks rotate along the X-axis (non-normal impact), there exists a certain correlation between the rotation speed and Rn, but Rn is also affected by the block shape and impact posture. Thus, a comprehensive variable - impact posture coefficient (IPC) was introduced to quantify the effect of rotation speed on Rn. In view of the difference of the mechanical action mechanism of normal impact force on Rn under different impact posture, the impact-rebound characteristics of the blocks were classified and discussed. For the type of rebounding after only one impact, IPC and Rn have linear positive correlation and negative correlation respectively when the mass center (C) is behind and in front of the contact point (CP) in the forward rotation test, and the results of the reverse rotation test were just the opposite. For the type of rebounding after two impacts, regardless of forward or reverse, whether C is behind or in front of CP during the first impact, Rn and IPC of each shaped block are strongly positive correlation, yet the relevant laws are not consistent under various working conditions. These conclusions basically reveal the influence of rotation speed on Rn, and provide a reference for accurate prediction of impact-rebound process of rotating irregular rockfall.
-
Key words:
- forward rotation /
- reverse rotation /
- restitution coefficient /
- impact posture coefficient /
- rockfall
-
-
表 1 试块与坡面特征参数及试验初始条件
Table 1. The characteristic parameters of the block and slope and the initial conditions of the test
试块特征 岩石类型 形状 尺寸 V/(m∙s−1) α/(°) 初始转速/
(r∙min−1)特征长度 值/mm 灰岩 正方体 边长 40.3 3.5 40 100~500
(正/反转)圆盘 直径/厚度 58.6/24.3 圆柱 直径/高 33.78/73 坡面特征 岩石类型 形状 尺寸 特征长度 值/mm 灰岩 长方体 长/宽/高 700/500/150 -
[1] 俸锦福, 张俊红, 朱彬, 等. 边坡滚石运动轨迹分段循环算法[J]. 中国地质灾害与防治学报,2011,22(4):96 − 101. [FENG Jinfu, ZHANG Junhong, ZHU Bin, et al. Segmented loop algorithm of theoretical calculation of trajectory of rockfall[J]. The Chinese Journal of Geological Hazard and Control,2011,22(4):96 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2011.04.021
[2] ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:103 − 113. doi: 10.1016/j.ijrmms.2012.05.029
[3] 贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质,2020,47(4):82 − 89. [HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology,2020,47(4):82 − 89. (in Chinese with English abstract)
[4] 章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011,30(6):1266 − 1273. [ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1266 − 1273. (in Chinese with English abstract)
[5] 李娟, 何亮, 荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)
[6] 孙敬辉, 石豫川. 重庆甑子岩崩塌落石动力学特征及危险性分区[J]. 中国地质灾害与防治学报,2019,30(3):6 − 11. [SUN Jinghui, SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zengziyan, Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):6 − 11. (in Chinese with English abstract)
[7] 何思明, 吴永, 李新坡. 滚石冲击碰撞恢复系数研究[J]. 岩土力学,2009,30(3):623 − 627. [HE Siming, WU Yong, LI Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics,2009,30(3):623 − 627. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.03.008
[8] 何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价—以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报,2020,31(4):24 − 33. [HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall: A case study of the Xuangou Collapse[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):24 − 33. (in Chinese with English abstract)
[9] BOURRIER F, BERGER F, TARDIF P, et al. Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches[J]. Earth Surface Processes and Landforms,2012,37(6):656 − 665. doi: 10.1002/esp.3202
[10] FERRARI F, GIANI G, APUANI T. Why can rockfall normal restitution coefficient be higher than one[J]. Rend Online Soc Geol It,2013,24:122 − 124.
[11] SPADARI M, GIACOMINI A, BUZZI O, et al. In situ rockfall testing in new south Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49:84 − 93. doi: 10.1016/j.ijrmms.2011.11.013
[12] JI Z M, CHEN Z J, NIU Q H, et al. Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts[J]. Landslides,2019,16(10):1939 − 1963. doi: 10.1007/s10346-019-01183-x
[13] JI Z M, CHEN Z J, NIU Q H, et al. A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments[J]. Landslides,2021,18(4):1531 − 1553. doi: 10.1007/s10346-020-01556-7
[14] 姬中民, 唐一举, 伍法权, 等. 落石形状和尺寸对恢复系数影响的室内试验研究[J]. 岩土力学,2021,42(3):665 − 672. [JI Zhongmin, TANG Yiju, WU Faquan, et al. Laboratory investigation of the effect of rockfall shape and size on coefficient of restitution[J]. Rock and Soil Mechanics,2021,42(3):665 − 672. (in Chinese with English abstract)
[15] GIANI G P, GIACOMINI A, MIGLIAZZA M, et al. Experimental and theoretical studies to improve rock fall analysis and protection work design[J]. Rock Mechanics and Rock Engineering,2004,37(5):369 − 389. doi: 10.1007/s00603-004-0027-2
[16] ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering,2016,49(3):927 − 941. doi: 10.1007/s00603-015-0798-7
[17] BUZZI O, GIACOMINI A, SPADARI M. Laboratory investigation on high values of restitution coefficients[J]. Rock Mechanics and Rock Engineering,2012,45(1):35 − 43. doi: 10.1007/s00603-011-0183-0
[18] GIACOMINI A, THOENI K, LAMBERT C, et al. Experimental study on rockfall drapery systems for open pit highwalls[J]. International Journal of Rock Mechanics and Mining Sciences,2012,56:171 − 181. doi: 10.1016/j.ijrmms.2012.07.030
[19] HEIDENREICH B. Small- and half scale experimental studies of rockfall impacts on sandy slopes [D]. Lausanne: Swiss Federal Institute of Technology Lausanne, 2004.
[20] WYLLIE D C. Calibration of rock fall modeling parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2014,67:170 − 180. doi: 10.1016/j.ijrmms.2013.10.002
[21] ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Rockfalls: influence of rock hardness on the trajectory of falling rock blocks[J]. Bulletin of the Geological Society of Greece,2013,47(4):1684 − 1693. doi: 10.12681/bgsg.11033
[22] 陈涛, 陈志坚, 孟子耀. 基于Trajec 3D的硬岩人工路堑边坡滚石运动范围预测[J]. 中国地质灾害与防治学报,2019,30(5):37 − 41. [CHEN Tao, CHEN Zhijian, MENG Ziyao. Movement prediction of falling boulders in artificial cutting slope of hard rock based on Trajec 3D[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):37 − 41. (in Chinese with English abstract)
[23] ASTERIOU P, TSIAMBAOS G. Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:41 − 50. doi: 10.1016/j.ijrmms.2018.04.001
[24] ANSARI M K, AHMAD M, SINGH R, et al. Correlation between Schmidt hardness and coefficient of restitution of rocks[J]. Journal of African Earth Sciences,2015,104:1 − 5. doi: 10.1016/j.jafrearsci.2015.01.005
[25] FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks[J]. Engineering Geology,2013,162:43 − 52. doi: 10.1016/j.enggeo.2013.05.007
[26] MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc, 1994.
-