中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于节理不确定性的可靠度分析

胡康, 任光明, 常文娟, 李征征, 邹林志. 基于节理不确定性的可靠度分析——以西藏某岩质边坡为例[J]. 中国地质灾害与防治学报, 2022, 33(2): 53-60. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-07
引用本文: 胡康, 任光明, 常文娟, 李征征, 邹林志. 基于节理不确定性的可靠度分析——以西藏某岩质边坡为例[J]. 中国地质灾害与防治学报, 2022, 33(2): 53-60. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-07
HU Kang, REN Guangming, CHANG Wenjuan, LI Zhengzheng, ZOU Linzhi. Reliability analysis based on joint uncertainty: A case study of a rock slope in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 53-60. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-07
Citation: HU Kang, REN Guangming, CHANG Wenjuan, LI Zhengzheng, ZOU Linzhi. Reliability analysis based on joint uncertainty: A case study of a rock slope in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 53-60. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-07

基于节理不确定性的可靠度分析

详细信息
    作者简介: 胡 康(1996-),男,四川内江人,硕士研究生,环境地质专业。E-mail: 898863062@qq.com
    通讯作者: 任光明(1964-),男,四川南充人,教授,研究领域为岩土体工程特性及稳定性与环境效应、地质灾害评价等。E-mail: 635863163@qq.com
  • 中图分类号: TU457

Reliability analysis based on joint uncertainty: A case study of a rock slope in Tibet

More Information
  • 边坡稳定性一直是边坡安全的重点研究对象,针对边坡评价中常见的不确定性因素,可靠度分析是值得利用的方法。为评价某节理发育的岩质岸坡稳定性,通过有限元计算软件,结合现场勘探测绘数据,建立以边坡节理强度参数cφ为输入变量,安全系数为输出变量的点估计(PEM)计算概率模型,计算结果表明:节理发育对该边坡变形具有明显控制作用;边坡整体可靠性较好,破坏概率极低。最后,通过蒙托卡罗法对可靠度结果进行验证,结果表明两种方法的计算结果不存在显著性差异。研究结果表明节理对岩质边坡稳定具有良好的敏感性,基于节理不确定性的点估计法分析边坡可靠度是一种有效的方法。

  • 加载中
  • 图 1  Baecher节理网络模型

    Figure 1. 

    图 2  边坡出露典型节理

    Figure 2. 

    图 3  节理极点等密度图

    Figure 3. 

    图 4  边坡模拟剖面结构图

    Figure 4. 

    图 5  边坡节理有限元模型

    Figure 5. 

    图 6  PEM法计算稳定性系数概率分布图

    Figure 6. 

    图 7  最大剪应变云图(添加节理)

    Figure 7. 

    图 8  最大剪应变云图(不添加节理)

    Figure 8. 

    图 9  边坡位移矢量图(添加节理)

    Figure 9. 

    图 10  边坡位移矢量图(不添加节理)

    Figure 10. 

    图 11  边坡沿节理剪切变形

    Figure 11. 

    图 12  屈服节理分布图(局部)

    Figure 12. 

    表 1  岩体参数取值

    Table 1.  Parameter values of rock mass

    材料弹性模量/MPa泊松比φ/(°)c/MPa容重/(kN·m−3)
    均值标准差均值标准差
    强风化花岗岩100000.283820.120.0123.5
    弱风化花岗岩130000.264220.150.0225.0
    微新花岗岩200000.254930.500.0427.0
    下载: 导出CSV

    表 2  结构面几何特征值

    Table 2.  Geometric characteristc values of structural plane

    边坡分层节理组产状迹长密度/(条·m−2
    平均倾向/(°)平均倾角/(°)分布类型Fisher常数均值/m分布类型
    强风化层J123567Fisher958负指数分布0.20
    J212545455.50.25
    J1245745015负指数分布0.06
    弱风化层J212558Fisher4050.03
    J3105309050.05
    微新基岩J123678Fisher306负指数分布0.02
    J21355511040.01
    下载: 导出CSV

    表 3  结构面强度特征值

    Table 3.  Strength characteristic values of structural plane

    节理组号φ/(°)c/MPa法向刚度/(MPa·m−1切向刚度/(MPa·m−1抗拉强度/MPa
    均值标准差均值标准差
    J13020.040.002800025000
    J23320.080.0031000030000
    J33830.100.0051300038000
    下载: 导出CSV

    表 4  敏感性计算结果

    Table 4.  Sensitivity calculation results

    节理强度参数岩体强度参数稳定性系数
    c/MPφ/(°)c/MPaφ/(°)
    0.04300.15421.35
    0.034300.15421.33
    0.046300.15421.38
    0.04240.15421.23
    0.04360.15421.45
    0.04300.144421.34
    0.04300.156421.37
    0.04300.150361.27
    0.04300.150481.44
    下载: 导出CSV

    表 5  敏感性指标计算结果

    Table 5.  Sensitivity index calculation results

    节理强度参数岩体强度参数
    c/MPφ/(°)c/MPφ/(°)
    0.03700.16300.02220.1259
    下载: 导出CSV

    表 6  可靠度对比分析结果

    Table 6.  Results of reliability comparison analysis

    稳定性参数JEF-PEM点估计MCS蒙托卡罗
    平均值1.3441.590
    标准差0.05730.0854
    可靠性指数6.0076.907
    破坏概率0.001<0.001
    下载: 导出CSV
  • [1]

    陈祖煜, 陈立宏, 王玉杰, 等. 滑坡和建筑物抗滑稳定分析中的可靠度分析和分项系数设计方法[C]//陈祖煜. 水利水电工程风险分析及可靠度设计技术进展. 北京: 中国水利水电出版社, 2010: 27–39

    CHEN Zuyu, CHEN Lihong, WANG Yujie, et al. Reliability analysis and partial factor design methods for slope stability[C]// CHEN Zuyu. Proceedings of the symposium on risk analysis and reliability based design for water resources and hydropower projects. Beijing: China Water Power Press, 2010: 27–39. (in Chinese)

    [2]

    刘超, 袁颖, 左朝晖, 等. 考虑土参数自相关距离影响的单桩可靠性设计方法[J]. 水文地质工程地质,2020,47(3):122 − 127. [LIU Chao, YUAN Ying, ZUO Zhaohui, et al. Pile reliability design considering the influence of soil auto-correlation distance[J]. Hydrogeology & Engineering Geology,2020,47(3):122 − 127. (in Chinese with English abstract)

    [3]

    李涛, 刘国栋, 王聪. 基于可靠度理论的尾矿坝失稳概率及敏感性分析[J]. 中国地质灾害与防治学报,2019,30(3):81 − 86. [LI Tao, LIU Guodong, WANG Cong. Instability probability and sensitivity analysis of tailings dam based on reliability theory[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):81 − 86. (in Chinese with English abstract)

    [4]

    JIANG S H, LI D Q, ZHANG L M, et al. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method[J]. Engineering Geology,2014,168:120 − 128. doi: 10.1016/j.enggeo.2013.11.006

    [5]

    LI Y J, HICKS M A, NUTTALL J D. Comparative analyses of slope reliability in 3D[J]. Engineering Geology,2015,196:12 − 23. doi: 10.1016/j.enggeo.2015.06.012

    [6]

    ZHAO L H, YU C H, CHENG X, et al. A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136:104487. doi: 10.1016/j.ijrmms.2020.104487

    [7]

    LU R L, WEI W, SHANG K W, et al. Stability analysis of jointed rock slope by strength reduction technique considering ubiquitous joint model[J]. Advances in Civil Engineering,2020,2020:8862243.

    [8]

    冯开帅, 姜谙男, 吴洪涛, 等. 顺层非贯通节理边坡稳定性及破坏模式研究[J]. 公路工程,2020,45(6):52 − 58. [FENG Kaishuai, JIANG Annan, WU Hongtao, et al. Study on failure mode and stability of slope based on intermittent joints[J]. Highway Engineering,2020,45(6):52 − 58. (in Chinese with English abstract)

    [9]

    CHANG Y, CHANG L S, REN F Q. Strength anisotropy of jointed rock slope considering mining damage: A numerical analysis method[J]. Geomatics, Natural Hazards and Risk,2020,11(1):2587 − 2614. doi: 10.1080/19475705.2020.1856200

    [10]

    陈国良, 廖国华. 岩体节理网络的计算机模拟[J]. 有色金属(矿山部分),1989,41(6):23 − 28. [CHEN Guoliang, LIAO Guohua. Computer simulation of rock mass joint network[J]. Nonferrous Metals (Mining),1989,41(6):23 − 28. (in Chinese)

    [11]

    王宏, 陶振宇. 边坡稳定分析的节理网络模拟原理及工程应用[J]. 水利学报,1993,24(10):20 − 27. [WANG Hong, TAO Zhenyu. The principle of joint network simulation in the stability analysis of rock slope and its engineering application[J]. Journal of Hydraulic Engineering,1993,24(10):20 − 27. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.1993.10.003

    [12]

    严豪, 宋彦辉, 陈子玉. 基于Voronoi节理模型的碎裂岩边坡稳定性分析[J]. 中国地质灾害与防治学报,2018,29(1):34 − 39. [YAN Hao, SONG Yanhui, CHEN Ziyu. Stability analysis of broken rock slope based on Voronoi joint net model[J]. The Chinese Journal of Geological Hazard and Control,2018,29(1):34 − 39. (in Chinese with English abstract)

    [13]

    李源亮, 任光明, 刘艳领, 等. 基于节理网络有限元的岩质边坡稳定性分析[J]. 长江科学院院报,2019,36(1):78 − 83. [LI Yuanliang, REN Guangming, LIU Yanling, et al. Stability analysis of rock slope based on finite elements with joint network[J]. Journal of Yangtze River Scientific Research Institute,2019,36(1):78 − 83. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170823

    [14]

    肖术, 吴顺川, 高永涛, 等. 基于PEM-JFEM方法的节理岩质边坡稳定性评价[J]. 工程科学学报,2015,37(7):844 − 850. [XIAO Shu, WU Shunchuan, GAO Yongtao, et al. Jointed rock slope stability evaluation based on PEM- JFEM method[J]. Chinese Journal of Engineering,2015,37(7):844 − 850. (in Chinese with English abstract)

    [15]

    张宜杰, 任光明, 常文娟, 等. 节理岩质边坡稳定性概率分析[J]. 成都理工大学学报(自然科学版),2021,48(2):235 − 241. [ZHANG Yijie, REN Guangming, CHANG Wenjuan, et al. Probabilistic analysis of stability of jointed rock slope[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(2):235 − 241. (in Chinese with English abstract)

    [16]

    PRZEWLOCKI J, ZABUSKI L, WINKELMANN K. Reliability analysis of sea cliff slope stability by point estimate method[J]. IOP Conference Series:Materials Science and Engineering,2019,471:042003. doi: 10.1088/1757-899X/471/4/042003

    [17]

    许湘华, 曲广琇, 方理刚. 基于节理几何参数不确定性的边坡可靠度分析[J]. 中南大学学报(自然科学版),2010,41(3):1139 − 1145. [XU Xianghua, QU Guangxiu, FANG Ligang. Reliability analysis of rock slope based on uncertainty of joint geometric parameters[J]. Journal of Central South University (Science and Technology),2010,41(3):1139 − 1145. (in Chinese with English abstract)

    [18]

    王双, 陈征宙, 吴强, 等. 基于节理产状不确定性的边坡稳定性及敏感度分析[J]. 岩土工程学报,2013,35(2):348 − 354. [WANG Shuang, CHEN Zhengzhou, WU Qiang, et al. Stability and sensitivity analysis of slopes based on uncertainty of joint orientations[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):348 − 354. (in Chinese with English abstract)

    [19]

    王双. 节理产状概率模型研究及其在产状分组和岩坡不确定分析中的应用[D]. 南京: 南京大学, 2013

    WANG Shuang. Research on distribution model of joint orientations and its application to joint set clustering and rock slope uncertainty analysis[D]. Nanjing: Nanjing University, 2013. (in Chinese with English abstract)

    [20]

    申矫健. 基于参数不确定性的岩质边坡稳定性分析方法研究[D]. 赣州: 江西理工大学, 2014

    SHEN Jiaojian. Study on stability analysis method of rock slope based on parameter uncertainty[D]. Ganzhou: Jiangxi University of Science and Technology, 2014. (in Chinese with English abstract)

    [21]

    BAECHER G B, LANNEY N A, EINSTEIN H H. Statistical description of rock properties and sampling[J]. 18th U S Symposium on Rock Mechanics, USRMS 1977,1977:5 − 8.

    [22]

    王宇, 李晓, 刘帅, 等. 岩体离散裂隙网络稳定性计算的节理有限元法[J]. 岩石力学与工程学报,2013,32(增刊 2):3337 − 3345. [WANG Yu, LI Xiao, LIU Shuai, et al. Stability calculation for discrete fracture network of rock masses based on joint finite element method[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup 2):3337 − 3345. (in Chinese with English abstract)

    [23]

    CACAS M C, LEDOUX E, DE MARSILY G, et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[J]. Water Resources Research,1990,26(3):479 − 489.

    [24]

    DERSHOWITZ W S, EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering,1988,21(1):21 − 51. doi: 10.1007/BF01019674

    [25]

    ROSENBLUETH E. Point estimates for probability moments[J]. Proceedings of the National Academy of Sciences of the United States of America,1975,72(10):3812 − 3814. doi: 10.1073/pnas.72.10.3812

    [26]

    李侃, 巨能攀. 基于蒙特卡洛方法的边坡可靠性评价[J]. 中国地质灾害与防治学报,2014,25(1):23 − 27. [LI Kan, JU Nengpan. Integrated application of Monte-Carlo simulation for landslide reliability analysis[J]. The Chinese Journal of Geological Hazard and Control,2014,25(1):23 − 27. (in Chinese with English abstract)

  • 加载中

(12)

(6)

计量
  • 文章访问数:  1843
  • PDF下载数:  117
  • 施引文献:  0
出版历程
收稿日期:  2021-06-03
修回日期:  2021-07-30
刊出日期:  2022-04-25

目录