中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于InSAR监测和PSO-SVR模型的高填方区沉降预测

李华蓉, 戴双璘, 郑嘉欣. 基于InSAR监测和PSO-SVR模型的高填方区沉降预测[J]. 中国地质灾害与防治学报, 2024, 35(2): 127-136. doi: 10.16031/j.cnki.issn.1003-8035.202210005
引用本文: 李华蓉, 戴双璘, 郑嘉欣. 基于InSAR监测和PSO-SVR模型的高填方区沉降预测[J]. 中国地质灾害与防治学报, 2024, 35(2): 127-136. doi: 10.16031/j.cnki.issn.1003-8035.202210005
LI Huarong, DAI Shuanglin, ZHENG Jiaxin. Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 127-136. doi: 10.16031/j.cnki.issn.1003-8035.202210005
Citation: LI Huarong, DAI Shuanglin, ZHENG Jiaxin. Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 127-136. doi: 10.16031/j.cnki.issn.1003-8035.202210005

基于InSAR监测和PSO-SVR模型的高填方区沉降预测

  • 基金项目: 重庆市研究生联合培养基地项目(JDLHPYJD2020005);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0880)
详细信息
    作者简介: 李华蓉(1980−),女,湖北宜昌人,博士,副教授,主要从事地图学与地理信息系统方向的研究。E-mail:lihuarong.cat@yeah.net
    通讯作者: 戴双璘(1999−),女,重庆璧山人,助理工程师,主要从事合成孔径雷达方向的研究。E-mail:622200100007@mails.cqjtu.edu.cn
  • 中图分类号: P642.26;P237

Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model

More Information
  • 基于小基线集干涉测量技术(small baseline subsets interferometric synthetic aperture radar, SBAS-InSAR)和机器学习知识对高填方区域进行地表沉降监测及预测,对工程项目的施工、检修、运营等工作都具有重要的指导意义。文章以重庆东港集装箱码头为研究对象,选取2018—2019年覆盖研究区的31景Sentinel-1A数据,利用SBAS-InSAR技术获取该区域的地表沉降数据,并进行内外精度评定;通过信息量模型分析地表沉降易发地地势特点,选择预测点位;通过灰色关联分析计算动态影响因素与沉降量之间的灰色关联度,使用主成分分析法从影响因素中提取出主成分,构建训练集和测试集,通过粒子群算法-支持向量机法(particle swarm optimization-support vector regression, PSO-SVR)预测模型对测试集数据进行预测。为验证该模型在高填方区域沉降预测的可靠性和优异性,将自回归差分整合移动平均模型(autoregressive integrated moving average model, ARIMA)作为对比模型,分别将PSO-SVR模型的预测结果和ARIMA模型的预测结果与测试集进行对比。结果表明:PSO-SVR模型的预测精度优于ARIMA模型,在高填方区域地表沉降预测中具有较好的实用性。

  • 加载中
  • 图 1  地表沉降预测流程图

    Figure 1. 

    图 2  研究区域

    Figure 2. 

    图 3  研究区形变量图

    Figure 3. 

    图 4  Google Earth历史影像图

    Figure 4. 

    图 5  形变点位置图

    Figure 5. 

    图 6  各模型预测结果

    Figure 6. 

    表 1  监测点地表形变结果

    Table 1.  Surface deformation results of monitoring sites

    点名基于SBAS-InSAR技术获取的LOS向形变数据/mm基于SBAS-InSAR技术获取的垂直形变数据/mm水准测量获取的形变量/mm
    1−12.75−15.26−15.20
    2−13.62−16.29−13.60
    3−13.62−16.29−9.20
    ……………………
    46−22.75−27.22−39.80
    47−21.42−25.63−36.00
    48−20.45−24.46−17.40
    下载: 导出CSV

    表 2  静态影响因素信息量计算结果

    Table 2.  Information quantity calculation results of static influencing factors

    静态影响因子影响因子分级信息量
    高程/m151~1870.82
    187~2310.07
    231~2630.64
    263~292−1.28
    292~333−5.62
    坡度/(°)0~5−0.32
    5~100.00
    10~150.08
    15~200.37
    >200.20
    坡向平坡−1.78
    北坡0.36
    东北坡−0.02
    东坡−0.80
    东南坡−0.47
    南坡−0.16
    西南坡0.42
    西坡−0.21
    西北坡0.23
    平面曲率0~16.90.05
    16.9~33.6−0.22
    33.6~50.5−0.14
    50.5~67.4−0.19
    67.4~81.50.31
    剖面曲率0~2.90.01
    2.9~5.8−0.01
    5.8~9−0.11
    9~13.60.24
    13.6~26.8−0.23
    道路缓冲区/m0~30−0.78
    30~60−0.19
    60~900.13
    >900.28
    水系缓冲区/m0~500−0.08
    500~10000.68
    1000~1500−0.74
    1500~2 0000.48
    >2 000−2.68
    地形起伏度/m0~7−0.48
    7~130.00
    13~190.13
    19~290.25
    29~480.26
    人类活动缓冲区/m0~1000.56
    100~200−1.07
    200~300−1.13
    300~400−0.64
    >400−1.89
    下载: 导出CSV

    表 3  灰色关联度

    Table 3.  Summary table of grey relational degree

    影响因素气温水位地下水NDVI降雨量
    灰色关联度0.758 40.758 30.692 90.666 70.622 3
    下载: 导出CSV

    表 4  PSO-SVR模型的预测结果

    Table 4.  Prediction results of the PSO-SVR model

    点号日期真实值/mm预测值/mm
    形变点12019-10-14−14.71−14.61
    2019-11-07−17.43−17.34
    2019-12-01−20.71−20.70
    2019-12-25−21.42−21.32
    形变点22019-10-14−13.08−13.18
    2019-11-07−16.63−16.53
    2019-12-01−18.04−18.03
    2019-12-25−20.29−20.19
    下载: 导出CSV

    表 5  ARIMA模型的预测结果

    Table 5.  Prediction results of the ARIMA model

    点号日期真实值/mm预测值/mm
    形变点12019-10-14−14.71−15.26
    2019-11-07−17.44−17.98
    2019-12-01−20.70−21.32
    2019-12-25−21.42−22.14
    形变点22019-10-14−13.08−13.75
    2019-11-07−16.63−17.12
    2019-12-01−18.04−18.63
    2019-12-25−20.29−20.91
    下载: 导出CSV

    表 6  精度评定表

    Table 6.  Accuracy evaluation table

    模型点号MAEMSER2
    PSO-SVR形变点10.075 30.007 50.999 0
    形变点20.075 00.007 50.998 9
    ARIMA形变点10.606 90.373 10.948 3
    形变点20.593 30.356 80.947 9
    下载: 导出CSV
  • [1]

    刘强. 时序InSAR技术在中型城市地表形变时空特征应用及预测分析[D]. 抚州: 东华理工大学, 2022

    LIU Qiang. Application and prediction analysis of time series InSAR technology in temporal and spatial characteristics of surface deformation in medium-sized cities[D]. Fuzhou: East China Institute of Technology, 2022. (in Chinese with English abstract)

    [2]

    李金超. 基于InSAR和Sentinel-1A的淮南矿区形变灾害监测研究[D]. 合肥: 合肥工业大学, 2021

    LI Jinchao. Research on deformation disaster monitoring in Huainan mining area based on InSAR and sentinel-1A[D]. Hefei: Hefei University of Technology, 2021. (in Chinese with English abstract)

    [3]

    FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8 − 20. doi: 10.1109/36.898661

    [4]

    BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792

    [5]

    于书媛,杨源源,张鹏飞,等. 运用时序InSAR技术监测合肥市地面沉降及断裂活动[J]. 大地测量与地球动力学,2021,41(4):398 − 402. [YU Shuyuan,YANG Yuanyuan,ZHANG Pengfei,et al. Monitoring land subsidence and fault activity in Hefei City based on MT-InSAR[J]. Journal of Geodesy and Geodynamics,2021,41(4):398 − 402. (in Chinese with English abstract) doi: 10.14075/j.jgg.2021.04.014

    Yu Shuyuan, Yang Yuanyuan, Zhang Pengfei, et al. Monitoring land subsidence and fault activity in Hefei city based on MT-InSAR[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 398-402. (in Chinese with English abstract) doi: 10.14075/j.jgg.2021.04.014

    [6]

    代聪,李为乐,陆会燕,等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版),2021,46(7):994 − 1002. [DAI Cong,LI Weile,LU Huiyan,et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University,2021,46(7):994 − 1002. (in Chinese)

    DAI Cong, LI Weile, LU Huiyan, et al. Active landslides detection in Zhouqu County, Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. (in Chinese)

    [7]

    赵现仁. 基于时序干涉SAR的北极地区冰川运动监测分析[D]. 北京: 北京建筑大学, 2020

    ZHAO Xianren. Monitoring and analysis of glacier movement in arctic based on time series interferometric SAR[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese with English abstract)

    [8]

    周定义,左小清. 基于SBAS-InSAR和PSO-BP神经网络算法的矿区地表沉降监测及预测[J]. 云南大学学报(自然科学版),2021,43(5):895 − 905. [ZHOU Dingyi,ZUO Xiaoqing. Surface subsidence monitoring and prediction in mining area based on SBAS-InSAR and PSO-BP neural network algorithm[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(5):895 − 905. (in Chinese with English abstract)

    ZHOU Dingyi, ZUO Xiaoqing. Surface subsidence monitoring and prediction in mining area based on SBAS-InSAR and PSO-BP neural network algorithm[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(5)895-905(in Chinese with English abstract)

    [9]

    师芸,李杰,吕杰,等. 结合SBAS-InSAR与支持向量回归的开采沉陷监测与预测[J]. 遥感信息,2021,36(2):6 − 12. [SHI Yun,LI Jie,LYU Jie,et al. Monitoring and prediction of mining subsidence based on SBAS-InSAR and improved support vector regression[J]. Remote Sensing Information,2021,36(2):6 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3177.2021.02.002

    SHI Yun, LI Jie, LV Jie, et al. Monitoring and prediction of mining subsidence based on SBAS-InSAR and improved support vector regression[J]. Remote Sensing Information, 2021, 36(2)6-12(in Chinese with English abstract) doi: 10.3969/j.issn.1000-3177.2021.02.002

    [10]

    CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273 − 297.

    [11]

    喜文飞,杨正荣,赵子龙,等. 基于SBAS-InSAR技术的小区域沉降监测研究[J]. 云南师范大学学报(自然科学版),2022,42(4):41 − 44. [XI Wenfei,YANG Zhengrong,ZHAO Zilong,et al. Study on settlement monitoring in small area based on the SBAS-InSAR technology[J]. Journal of Yunan Normal University (Natural Sciences Edition),2022,42(4):41 − 44. (in Chinese with English abstract)

    XI Wenfei, YANG Zhengrong, ZHAO Zilong, et al. Study on settlement monitoring in small area based on the SBAS-InSAR technology[J]. Journal of Yunan Normal University (Natural Sciences Edition), 2022, 42(4)41-44(in Chinese with English abstract)

    [12]

    杨康,薛喜成,李识博. 信息量融入GA优化SVM模型下的地质灾害易发性评价[J]. 安全与环境工程,2022,29(3):109 − 118. [YANG Kang,XUE Xicheng,LI Shibo. Geological hazard susceptibility assessment by incorporating information value into GA optimized SVM model[J]. Safety and Environmental Engineering,2022,29(3):109 − 118. (in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.20210976

    YANG Kang, XUE Xicheng, LI Shibo. Geological hazard susceptibility assessment by incorporating information value into GA optimized SVM model[J]. Safety and Environmental Engineering, 2022, 29(3)109-118(in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.20210976

    [13]

    谭学瑞,邓聚龙. 灰色关联分析:多因素统计分析新方法[J]. 统计研究,1995,12(3):46 − 48. [TAN Xuerui,DENG Julong. Grey connected analysis: A new method of multifactor statistical analysis[J]. Statistical Research,1995,12(3):46 − 48. (in Chinese with English abstract)

    TAN Xuerui, DENG Julong. Grey Connected Analysis: A New Method of Multifactor Statistical Analysis[J]. Statistical Research, 1995, 12(3): 46-48.(in Chinese with English abstract)

    [14]

    何旭,何毅,张立峰,等. 联合InSAR与PCA的北京平原地面沉降时空分析[J]. 光谱学与光谱分析,2022,42(7):2315 − 2324. [HE Xu,HE Yi,ZHANG Lifeng,et al. Spatio-temporal analysis of land subsidence in Beijing plain based on InSAR and PCA[J]. Spectroscopy and Spectral Analysis,2022,42(7):2315 − 2324. (in Chinese with English abstract)

    HE Xu, HE Yi, ZHANG Lifeng, et al. Spatio-temporal analysis of land subsidence in beij ing plain based on InSAR and PCA[J]. Spectroscopy and Spectral Analysis, 2022, 42(7)2315-2324(in Chinese with English abstract)

    [15]

    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks. November 27 - December 1, 1995, Perth, WA, Australia. IEEE, 2002: 1942-1948.

    [16]

    韩冰,袁颖. 基于主成分分析的GA-SVM地表沉降预测模型[J]. 中国科技论文,2018,13(9):1045 − 1049. [HAN Bing,YUAN Ying. Application of GA-SVM model based on principal component nalysis to prediction of surface settlement of shield construction[J]. China Science Paper,2018,13(9):1045 − 1049. (in Chinese with English abstract)

    HAN Bing, YUAN Ying. Application of GA-SVM model based on principal component nalysis to prediction of surface settlement of shield construction[J]. China Sciencepaper, 2018, 13(9): 1045-1049. (in Chinese with English abstract)

    [17]

    冯小蔓. 基于InSAR技术的地表形变与雪深监测研究[D]. 太原: 太原理工大学, 2021

    FENG Xiaoman. Research on monitoring of surface deformation and snow depth based on InSAR technology[D]. Taiyuan: Taiyuan University of Technology, 2021. (in Chinese with English abstract)

    [18]

    潘建平,邓福江,徐正宣,等. 基于轨道精炼控制点精选的极艰险区域时序InSAR地表形变监测[J]. 中国地质灾害与防治学报,2021,32(5):98 − 104. [PAN Jianping,DENG Fujiang,XU Zhengxuan,et al. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):98 − 104. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-12

    PAN Jianping, DENG Fujiang, XU Zhengxuan, et al. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-12

    [19]

    FAN Hongdong,WANG Liang,WEN Binfan,et al. A new model for three-dimensional deformation extraction with single-track InSAR based on mining subsidence characteristics[J]. International Journal of Applied Earth Observation and Geoinformation,2021,94:102223. doi: 10.1016/j.jag.2020.102223

    [20]

    杨沛璋,崔圣华,裴向军,等. 基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化[J]. 地质科技通报,2023,42(6):63 − 75. [YANG Peizhang,CUI Shenghua,PEI Xiangjun,et al. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images[J]. Bulletin of Geological Science and Technology,2023,42(6):63 − 75. (in Chinese with English abstract)

    [YANG Peizhang, CUI Shenghua, PEI Xiangjun, et al. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 63-75.(in Chinese with English abstract)

    [21]

    中国国土资源航空物探遥感中心. 地面沉降干涉雷达数据处理技术规程: DD 2014−11[S]. 北京: 中国地质调查局, 2014

    China Aero Geophysical Survey and Remote Sensing Center for Land and Resources. Technical specification for data processing of land subsidence interference radar: DD 2014−11[S]. Beijing: China Geological Survey, 2014. (in Chinese)

    [22]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese with English abstract)

    [23]

    刘刚,徐成华,施威,等. 南京河西地区地面沉降成因分析[J]. 地质论评,2023,69(2):639 − 647. [LIU Gang,XU Chenghua,SHI Wei,et al. Cause analysis of land subsidence in Hexi area,Nanjing[J]. Geological Review,2023,69(2):639 − 647. (in Chinese with English abstract) doi: 10.16509/j.georeview.2022.08.081

    Liu Gang, Xu Chenghua, Shi Wei, et al. Cause analysis of land subsidence in Hexi area, Nanjing[J]. Geological Review, 2023, 69(2): 639-647. (in Chinese with English abstract) doi: 10.16509/j.georeview.2022.08.081

    [24]

    葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology and Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106022

    GE Weili, LI Yuanjie, ZHANG Chunming, et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology and Engineering Geology, 2022, 49(4)198-206(in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106022

    [25]

    秦胜伍,张延庆,张领帅,等. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版),2021,51(5):1316 − 1323. [QIN Shengwu,ZHANG Yanqing,ZHANG Lingshuai,et al. Prediction of ground settlement around deep foundation pit based on stacking model fusion[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1316 − 1323. (in Chinese with English abstract)

    Qin Shengwu, Zhang Yanqing, Zhang Lingshuai, et al. Prediction of ground settlement around deep foundation pit based on stacking model fusion[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1316-1323. (in Chinese with English abstract)

  • 加载中

(6)

(6)

计量
  • 文章访问数:  401
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2022-10-05
修回日期:  2023-03-15
录用日期:  2023-04-17
刊出日期:  2024-04-25

目录