中国地质环境监测院
中国地质灾害防治工程行业协会
主办

机载LiDAR技术在广州黄埔区地质灾害调查中的应用

李文龙. 机载LiDAR技术在广州黄埔区地质灾害调查中的应用[J]. 中国地质灾害与防治学报, 2024, 35(6): 164-172. doi: 10.16031/j.cnki.issn.1003-8035.202305016
引用本文: 李文龙. 机载LiDAR技术在广州黄埔区地质灾害调查中的应用[J]. 中国地质灾害与防治学报, 2024, 35(6): 164-172. doi: 10.16031/j.cnki.issn.1003-8035.202305016
LI Wenlong. Application of airborne LiDAR technology in geological hazard investigation in Huangpu District, Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 164-172. doi: 10.16031/j.cnki.issn.1003-8035.202305016
Citation: LI Wenlong. Application of airborne LiDAR technology in geological hazard investigation in Huangpu District, Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 164-172. doi: 10.16031/j.cnki.issn.1003-8035.202305016

机载LiDAR技术在广州黄埔区地质灾害调查中的应用

  • 基金项目: 广州市资源规划和海洋科技协同创新中心项目(2023B04J0301;2023B04J0326);广东省城市感知与监测预警企业重点实验室基金项目(2020B121202019);广州市城市规划勘测设计研究院有限公司科技基金项目(RDI2220204031;RDI2230204019)
详细信息
    作者简介: 李文龙(1996—),男,内蒙古呼伦贝尔人,硕士,工程师,主要从事岩土工程勘察、地质灾害评估工作。E-mail:1240431411@qq.com
  • 中图分类号: P694

Application of airborne LiDAR technology in geological hazard investigation in Huangpu District, Guangzhou City

  • 近年来,机载LiDAR技术快速发展,其能够“穿透”地面植被,获取地面真实高程,对于精准获取地质灾害隐患点具有重要意义。为查明广州黄埔区地质灾害发育特征,文章基于机载LiDAR技术获取了黄埔区总面积为526.5 km2的三维点云和数字正射影像等数据,结合传统人工现场调查手段,查明项目范围内的典型地质灾害发育特征。解译结果表明:调查区内地质灾害呈面状和线状分布,主要集中在中北部山区丘陵地带,其他地区零星分布或无分布,崩塌及危岩体类地质灾害435处、滑坡及不稳定斜坡类地质灾害1027处,极端天气情况下可能诱发的低频泥石流灾害66处,以滑坡及不稳定斜坡类灾害为主;此外,区内地质灾害发育规律与地形地貌、地质条件、工程活动及降雨等因素具有较强的关联性,其中降雨诱发地质灾害较为显著,灾害多发生在月降雨量650~700 mm区间。研究表明,机载LiDAR技术能够实现研究区内地质灾害的识别,对指导识灾避灾减灾工作具有较好的指导作用和应用价值。

  • 加载中
  • 图 1  机载 LiDAR数据处理流程

    Figure 1. 

    图 2  调查区机载LiDAR遥感解译成果图

    Figure 2. 

    图 3  调查区内典型林下危岩体

    Figure 3. 

    图 4  地质灾害分布特征与高程的关系

    Figure 4. 

    图 5  地质灾害分布特征与坡度的关系

    Figure 5. 

    图 6  地质灾害分布特征与坡高的关系

    Figure 6. 

    图 7  地质灾害分布特征与坡向的关系

    Figure 7. 

    图 8  地质灾害分布特征与岩土体类型的关系

    Figure 8. 

    图 9  地质灾害分布特征与断层距离的关系

    Figure 9. 

    图 10  地质灾害分布特征与工程活动距离的关系

    Figure 10. 

    图 11  地质灾害分布特征与月降雨量的关系

    Figure 11. 

    表 1  主要解译内容及标志

    Table 1.  Main interpretation contents and symbols

    类型 解译标志
    滑坡 滑体位置、地貌部位、范围、形态、坡度、高程、沟谷发育状况、植被发育状况、总体滑动方向、与重要建筑物的关系等
    崩塌 崩塌位置、形态、分布高程;崩塌堆积体的坡度、面积、发育方向、植被类型
    泥石流 流域的边界、面积、形态、主沟长度、主沟纵降比、坡度;物源区水体分布、集水面积、地形坡度、岩性、植被覆盖程度、植物类别及分布状况,崩塌、滑坡、断裂、松散堆积物等不良现象,形成泥石流固体物质的分布范围;流通区沟床的横纵坡度、冲淤变化以及泥石流痕迹,阻塞地段堆积类型、跌水、急弯、卡口情况等
    危岩体 危岩体多发生在节理裂隙发育岩质山坡与峡谷陡岸上,坡度通常在55°~75°,上陡下缓,表面坎坷不平,具粗糙感,偶出现巨大块石影像;危岩体上部外围有时可见到张节理形成的裂缝影像
    不稳定斜坡 不稳定斜坡位置、形态、分布高程、堆积体面积、斜坡范围内InSAR形变数据分布
    下载: 导出CSV

    表 2  调查区内典型地质灾害解译影像及过程

    Table 2.  Typical geological hazards interpretation images and processes in the survey area

    类别 崩塌 滑坡 泥石流
    三维光学影像
    三维数字高程模型
    解译过程 崩塌多发育在陡峭山体或公路开挖边坡处,其物源区与堆积区交接处明显。在 LiDAR 数据上表现为滑源区坡度较大并可能伴随局部拉花,向堆积区过渡时则坡度突然变缓,有明显的陡缓交界线;堆积区呈现三角锥形或梨形,处于地形低处,表面粗糙度特征与环境差异较大,但新近堆积粗糙度大颗粒感明显,古老堆积则粗糙度小较光滑 对于光学影像,若坡面植被较多,通常无法进行滑坡识别;此时LiDAR 获取的数字高程模型能去除掉表面的干扰信息,很好地识别滑坡后缘的滑体缺失和前缘堆积体,滑坡后缘椅状地貌、滑坡下错迹象、滑坡表面粗糙度差异,因此滑坡边界十分清楚,关于滑坡的解译可很好体现机载LiDAR 数据区别于传统影像滑坡解译的优势 泥石流以发育地形、堆积扇和沟道范围内的不良地质体作为人工综合解译标志。泥石流沟谷为低于原有平面的负地形地貌,多为雨水汇聚通道;同时沟道内不良地质体的存在为泥石流提供可流动物源;在降雨条件下可流动物源沟道内汇聚并高速流向沟口形成堆积扇。研究区内泥石流堆积扇受人为改造程度严重,很难发现堆积扇范围边界
    下载: 导出CSV
  • [1]

    冯振,陈亮,王立朝,等. 区域地质灾害易发性评价的证据权法原理与实践[J]. 地质通报,2024,43(7):1255 − 1265. [FENG Zhen,CHEN Liang,WANG Lichao,et al. Principle and application of the weight-of-evidence method in regional landslide susceptibility assessment[J]. Geological Bulletin of China,2024,43(7):1255 − 1265. (in Chinese with English abstract)]

    FENG Zhen, CHEN Liang, WANG Lichao, et al. Principle and application of the weight-of-evidence method in regional landslide susceptibility assessment[J]. Geological Bulletin of China, 2024, 43(7): 1255 − 1265. (in Chinese with English abstract)

    [2]

    王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model:A case study of the high cut slope near damsite of a hydropower station in southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]

    WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: A case study of the high cut slope near damsite of a hydropower station in southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)

    [3]

    贾会会,薛建志,郭利召,等. “空天地” 一体化技术在采空区形变监测中的应用[J]. 中国地质灾害与防治学报,2023,34(3):69 − 82. [JIA Huihui,XUE Jianzhi,GUO Lizhao,et al. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):69 − 82. (in Chinese with English abstract)]

    JIA Huihui, XUE Jianzhi, GUO Lizhao, et al. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 69 − 82. (in Chinese with English abstract)

    [4]

    张小红. 机载激光雷达测量技术理论与方法[M]. 武汉:武汉大学出版社,2007. [ZHANG Xiaohong. Theory and method of airborne LiDAR measurement technology[M]. Wuhan:Wuhan University Press,2007. (in Chinese)]

    ZHANG Xiaohong. Theory and method of airborne LiDAR measurement technology[M]. Wuhan: Wuhan University Press, 2007. (in Chinese)

    [5]

    薛强,张茂省,董英,等. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质,2023,50(3):926 − 942. [XUE Qiang,ZHANG Maosheng,DONG Ying,et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing:Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China,2023,50(3):926 − 942. (in Chinese with English abstract)]

    XUE Qiang, ZHANG Maosheng, DONG Ying, et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing: Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China, 2023, 50(3): 926 − 942. (in Chinese with English abstract)

    [6]

    韩娜娜,单新建,宋小刚. 高空间分辨率数字高程模型测量技术及其在活断层研究中的应用[J]. 地震学报,2017,39(3):436 − 450. [HAN Nana,SHAN Xinjian,SONG Xiaogang. VHR DEM measurement technology and its application in active fault research[J]. Acta Seismologica Sinica,2017,39(3):436 − 450. (in Chinese with English abstract)]

    HAN Nana, SHAN Xinjian, SONG Xiaogang. VHR DEM measurement technology and its application in active fault research[J]. Acta Seismologica Sinica, 2017, 39(3): 436 − 450. (in Chinese with English abstract)

    [7]

    孙鑫喆,唐声权. 光学遥感技术的发展及其在活动构造研究中的应用[J]. 地震地质,2016,38(1):211 − 220. [SUN Xinzhe,TANG Shengquan. The development of optical remote sensing technology and its application to the active tectonics research[J]. Seismology and Geology,2016,38(1):211 − 220. (in Chinese with English abstract)]

    SUN Xinzhe, TANG Shengquan. The development of optical remote sensing technology and its application to the active tectonics research[J]. Seismology and Geology, 2016, 38(1): 211 − 220. (in Chinese with English abstract)

    [8]

    许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)]

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957 − 966. (in Chinese with English abstract)

    [9]

    陈松,陈长敬,罗士新,等. 广州南沙厚覆盖区近地表地层结构分析: 基于二维地球物理多方法探测结果[J]. 地质通报,2023,42(1):168 − 179. [CHEN Song,CHEN Changjing,LUO Shixin,et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area: based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China,2023,42(1):168 − 179. (in Chinese with English abstract)]

    CHEN Song, CHEN Changjing, LUO Shixin, et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area: based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China, 2023, 42(1): 168 − 179. (in Chinese with English abstract)

    [10]

    邵延秀,张波,邹小波,等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,2017,39(6):1185 − 1197. [SHAO Yanxiu,ZHANG Bo,ZOU Xiaobo,et al. Application of uavls to rapid geological surveys[J]. Seismology and Geology,2017,39(6):1185 − 1197. (in Chinese with English abstract)]

    SHAO Yanxiu, ZHANG Bo, ZOU Xiaobo, et al. Application of uavls to rapid geological surveys[J]. Seismology and Geology, 2017, 39(6): 1185 − 1197. (in Chinese with English abstract)

    [11]

    刘圣伟,郭大海,陈伟涛,等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质,2012,39(2):507 − 517. [LIU Shengwei,GUO Dahai,CHEN Weitao,et al. The application of airborne LiDAR technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China,2012,39(2):507 − 517. (in Chinese with English abstract)]

    LIU Shengwei, GUO Dahai, CHEN Weitao, et al. The application of airborne LiDAR technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2): 507 − 517. (in Chinese with English abstract)

    [12]

    康帅,张景发,崔效峰,等. 基于高精度地基LiDAR技术的活动断层错断地貌研究——以冷龙岭活动断裂带为例[J]. 地震,2017,37(3):61 − 71. [KANG Shuai,ZHANG Jingfa,CUI Xiaofeng,et al. Offset landform caused by active fault based on high precision terrestrial LiDAR data:A case study of the Lenglongling active fault zone[J]. Earthquake,2017,37(3):61 − 71. (in Chinese with English abstract)]

    KANG Shuai, ZHANG Jingfa, CUI Xiaofeng, et al. Offset landform caused by active fault based on high precision terrestrial LiDAR data: A case study of the Lenglongling active fault zone[J]. Earthquake, 2017, 37(3): 61 − 71. (in Chinese with English abstract)

    [13]

    陈涛,张培震,刘静,等. 机载激光雷达技术与海原断裂带的精细地貌定量化研究[J]. 科学通报,2014,59(14):1293 − 1304. [CHEN Tao,ZHANG Peizhen,LIU Jing,et al. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin,2014,59(14):1293 − 1304. (in Chinese with English abstract)]

    CHEN Tao, ZHANG Peizhen, LIU Jing, et al. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 2014, 59(14): 1293 − 1304. (in Chinese with English abstract)

    [14]

    李显巨. 基于新型遥感数据的典型地质环境信息智能识别[D]. 武汉:中国地质大学,2016. [LI Xianju. Intelligent identification of typical geo-environmental information using new remote sensing data[D]. Wuhan:China University of Geosciences,2016. (in Chinese with English abstract)]

    LI Xianju. Intelligent identification of typical geo-environmental information using new remote sensing data[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)

    [15]

    佘金星,程多祥,刘飞,等. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震,2018,34(3):435 − 444. [SHE Jinxing,CHENG Duoxiang,LIU Fei,et al. Application of airborne LiDAR technology in geological disaster investigation:Taking the Jiuzhaigou Ms7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China,2018,34(3):435 − 444. (in Chinese with English abstract)]

    SHE Jinxing, CHENG Duoxiang, LIU Fei, et al. Application of airborne LiDAR technology in geological disaster investigation: Taking the Jiuzhaigou Ms7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China, 2018, 34(3): 435 − 444. (in Chinese with English abstract)

    [16]

    董秀军,许强,佘金星,等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),2020,45(3):432 − 441. [DONG Xiujun,XU Qiang,SHE Jinxing,et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University,2020,45(3):432 − 441. (in Chinese with English abstract)]

    DONG Xiujun, XU Qiang, SHE Jinxing, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432 − 441. (in Chinese with English abstract)

    [17]

    罗达,林杭生,金钊,等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报,2019,10(3):213 − 226. [LUO Da,LIN Hangsheng,JIN Zhao,et al. Applications of UAV digital aerial photogrammetry and LiDAR in geomorphology and land cover research[J]. Journal of Earth Environment,2019,10(3):213 − 226. (in Chinese with English abstract)]

    LUO Da, LIN Hangsheng, JIN Zhao, et al. Applications of UAV digital aerial photogrammetry and LiDAR in geomorphology and land cover research[J]. Journal of Earth Environment, 2019, 10(3): 213 − 226. (in Chinese with English abstract)

    [18]

    曲雪妍,李媛,房浩,等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)]

    QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137 − 145. (in Chinese with English abstract)

    [19]

    郑史芳,黎治坤. 结合倾斜摄影技术的地质灾害监测[J]. 测绘通报,2018(8):88 − 92. [ZHENG Shifang,LI Zhikun. Geohazard monitoring based on tilt photography[J]. Bulletin of Surveying and Mapping,2018(8):88 − 92. (in Chinese with English abstract)]

    ZHENG Shifang, LI Zhikun. Geohazard monitoring based on tilt photography[J]. Bulletin of Surveying and Mapping, 2018(8): 88 − 92. (in Chinese with English abstract)

    [20]

    葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949 − 956. (in Chinese with English abstract)

    [21]

    杨航,辛宇佳,李建华,等. 广东莲花山花岗岩体锆石U-Pb年龄、地球化学特征及地质意义[J]. 地球学报,2022,43(2):211 − 223. [YANG Hang,XIN Yujia,LI Jianhua,et al. Zircon U-Pb ages and geochemical constraints of the Lianhuashan granitoids in Guangdong Province and their geological implications[J]. Acta Geoscientica Sinica,2022,43(2):211 − 223. (in Chinese with English abstract)]

    YANG Hang, XIN Yujia, LI Jianhua, et al. Zircon U-Pb ages and geochemical constraints of the Lianhuashan granitoids in Guangdong Province and their geological implications[J]. Acta Geoscientica Sinica, 2022, 43(2): 211 − 223. (in Chinese with English abstract)

  • 加载中

(11)

(2)

计量
  • 文章访问数:  229
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2023-05-17
修回日期:  2023-12-07
录用日期:  2024-06-14
刊出日期:  2024-12-25

目录