Basic characteristics and susceptibility evaluation of geological hazards in Shifang City, Sichuan Province
-
摘要:
大比例尺地质灾害精细化调查评价工作正逐渐开展,现有易发性评价成果与实际情况有出入,如何精准得到区域地质灾害易发性成果值得探究。文章以什邡市为例,基于斜坡单元逐坡开展现场调查工作并不断修正,依托调查成果进行主成分、相关性、多重共线性分析筛选出10个评价因子,通过信息量-逻辑回归模型对比分析栅格单元、斜坡单元易发性评价成果,最后以现场调查数据修编斜坡单元易发性评价结果。主要结论如下:(1)什邡市地质灾害整体规模较小,易发性整体上受曲率、植被覆盖率、道路影响最为明显;(2)栅格单元合理性及精度(AUC=0.876)均高于斜坡单元,但结果整体割裂琐碎难以运用,斜坡单元则存在高易发区较多及精度较差(AUC=0.825)的问题;(3)依托现场调查对斜坡单元易发性分区进行修编,得到高易发区面积占13.48%,中易发区面积占15.31%,低与非易发区面积占71.21%,降低了管控难度,精度与现场调查成果相吻合。研究成果及评价流程可指导当地风险管控工作,为同类型研究提供参考。
Abstract:The fine-scale investigation and evaluation of large-scale geological disasters are gradually being carried out. However, there are discrepancies between the existing susceptibility evaluation results and actual work. Exploring how to accurately obtain the susceptibility results of regional geological disasters is worth investigating. Taking Shifang City as an example, this study conducted field investigations based on slope units and continuously revised them. Based on the survey results, ten evaluation factors were selected through principal component analysis, correlation analysis and multicollinearity analysis. The information-logistic regression model is used to compare and analyze the susceptibility evaluation results of grid units and slope units. Finally, the susceptibility results of slope units were revised based on field survey data. The main conclusions are as follows: (1) The overall scale of geological disasters in Shifang City is relatively small, and susceptibility is mainly influenced by curvature, vegetation coverage, and roads. (2) The rationality and accuracy of grid units (AUC = 0.876 ) are higher than those of the slope unit. However, the results of grid units are fragmented and difficult to apply, while slope units have more high susceptibility areas and poor accuracy (AUC = 0.825). (3) Based on the field investigation, the susceptibility zoning of slope unit is revised. The proportions of high susceptibility, medium susceptibility, and low/non-susceptibility areas are 13.48%, 15.31%, and 71.21%, respectively, reducing the difficulty of control and matching the accuracy of field investigation results. The research results and evaluation process can guide local risk control work and provide references for similar studies.
-
-
表 1 什邡市地质灾害规模分布
Table 1. Scale distribution of geological disasters in Shifang City
/处 灾害类型 灾害规模 合计 大型 中型 小型 滑坡 0 16 213 229 崩塌 7 13 56 76 泥石流 0 16 56 72 表 2 KMO和巴特利特检验
Table 2. KMO and Bartlett tests
KMO 取样适切性量数 0.764 巴特利特球形度检验 10195.041 10115.699 91 91 0 0 表 3 评价因子相关性分析
Table 3. Correlation analysis of evaluation factors
指标 A B C D E F G H I J K L M N A 1 B −0.404 1 C 0.434 −0.151 1 D 0.796 −0.354 0.281 1 E 0.194 −0.137 0.0341 0.079 1 F 0.582 −0.276 0.838 0.374 0.407 1 G −0.401 0.318 −0.537 −0.273 −0.35 −0.566 1 H −0.625 0.724 −0.326 −0.406 −0.283 −0.482 0.396 1 I 0.709 −0.053 0.495 0.491 0.253 0.601 −0.361 −0.454 1 J 0.515 −0.276 0.952 0.334 0.436 0.871 −0.668 −0.445 0.517 1 K 0.261 −0.224 0.107 0.26 0.130 0.172 −0.281 −0.291 0.241 0.188 1 L −0.019 0.001 −0.033 −0.015 0.055 −0.019 −0.218 0.009 0.008 −0.024 0.063 1 M −0.513 0.925 −0.244 −0.400 −0.190 −0.384 0.378 0.807 −0.247 −0.37 −0.232 0.012 1 N 0.698 −0.29 0.391 0.700 0.160 0.424 −0.291 −0.528 0.696 0.377 0.291 −0.015 −0.353 1 注:A为工程岩组;B为距道路距离;C为地表粗糙度;D为地震动峰值加速度;E为NDVI;F为地形起伏度;G为地形湿度指数;H为距断层距离;I为高程;J为坡度;K为坡向;L-坡形;M-距河流距离;N-年均降雨量(下同)。 表 4 多重共线性诊断
Table 4. Multicollinearity diagnosis
序号 评价因子 VIF TOL 1 距道路距离 3.020 0.331 2 地表粗糙度 1.774 0.564 3 地震动峰值加速度 2.166 0.462 4 NDVI 1.234 0.810 5 地形湿度指数 1.813 0.551 6 距断层距离 3.536 0.283 7 高程 2.963 0.338 8 坡向 1.184 0.845 9 坡形 1.096 0.913 10 年均降雨量 3.132 0.319 表 5 评价因子信息量
Table 5. Summary table of Evaluation factor information
评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 距道路距离/m 0~200 190 3.518 1.080 高程/m <700 7 0.0267 −2.414 200~400 71 1.577 0.278 700~900 124 0.7889 0.971 400~600 33 0.857 −0.332 900~ 1100 158 0.6503 0.778 600~800 37 1.154 −0.034 1100 ~1300 67 0.3590 0.184 800~ 1000 19 0.755 −0.458 1300 ~1500 17 0.1050 −1.045 > 1000 27 0.223 −1.677 > 1500 4 0.0159 −2.933 地震动峰值
加速度/g0.15 79 0.8093 −0.390 坡向 北 39 1.3838 0.147 0.2 298 1.3684 0.135 西北 31 1.3946 0.155 地表粗糙度 0~0.066 137 1.131 −0.054 东 67 1.4851 0.218 0.066~0.172 159 1.626 0.309 东北 58 1.6423 0.318 0.172~0.299 67 0.932 −0.248 平面 12 0.2457 −1.581 0.299~0.818 14 0.562 −0.754 南 58 1.3973 0.157 NDVI −0.528~0.416 14 0.594 −0.695 东南 66 1.3593 0.129 0.416~0.798 109 1.474 0.213 西南 25 0.9471 −0.232 0.798~0.923 254 1.160 −0.027 西 21 1.0790 −0.102 地形湿度指数 0~5 183 1.197 0.002 年均
降雨量/mm<600 13 1.111 0.025 5~10 148 1.631 0.312 600~800 224 1.182 −0.011 10~15 33 0.740 −0.478 800~ 1000 140 1.224 −0.072 >15 13 0.475 −0.922 1000 ~1200 1 0.0794 −2.711 距断层距离/m 0~ 1000 162 1.105 −0.078 1200 ~1400 109 1.1585 −0.031 1000 ~2000110 1.699 0.352 > 1400 183 1.4356 0.184 2000 ~3000 43 1.584 0.283 坡形 凸型坡 13 1.111 0.025 3000 ~4000 47 2.539 0.754 平面坡 224 1.182 −0.011 > 4000 15 0.256 −1.542 凹型坡 140 1.224 −0.072 表 6 评价因子逻辑回归分析
Table 6. Logistic regression analysis of evaluation factors
评价因子 β SE wald sig B 0.986 0.108 23.956 0.000 C 0.483 0.315 2.349 0.125 D 0.327 0.428 0.584 0.445 E 1.402 0.476 8.677 0.003 G −0.694 0.380 3.329 0.068 H 0.521 0.191 7.449 0.006 I 0.739 0.097 58.100 0.000 K 0.639 0.275 5.383 0.020 L 1.608 2.787 1.143 0.285 N −0.351 0.360 0.951 0.329 常量 0.021 0.132 1.346 0.317 -
[1] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)]
TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)
[2] 邓乃尔,徐浩,邓虎成,等. 断裂系统对现今地应力扰动特征研究——以四川盆地泸州北区深层页岩气为例[J/OL]. 中国地质, 2024 (2024-02-27
2024-09-06]. https://kns.cnki.net/kcms/detail/11.1167.p.20240226.1529.002.html. [DENG Naier,XU Hao,DENG Hucheng,et al. Characteristics of fracture system disturbance on presentday geostress:An example of deep shale gas in the North Luzhou district, Sichuan Basin[J/OL]. Geology in China, 2024 (2024-02-27) [2024-09-06]. https://kns.cnki.net/kcms/detail/11.1167.p.20240226.1529.002.html. (in Chinese with English abstract)]
[3] 范宣梅,王欣,戴岚欣,等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,2022,30(5):1504 − 1516. [FAN Xuanmei,WANG Xin,DAI Lanxin,et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,2022,30(5):1504 − 1516. (in Chinese with English abstract)]
FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504 − 1516. (in Chinese with English abstract)
[4] 张群,易靖松,张勇,等. 西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J]. 自然灾害学报,2022,31(5):212 − 221. [ZHANG Qun,YI Jingsong,ZHANG Yong,et al. Geohazard risk assessment about county units in southwest mountainous areas of China:Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters,2022,31(5):212 − 221. (in Chinese with English abstract)]
ZHANG Qun, YI Jingsong, ZHANG Yong, et al. Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters, 2022, 31(5): 212 − 221. (in Chinese with English abstract)
[5] 刘佳,郭海燕,邓国卫,等. 川藏铁路四川段沿线诱发地质灾害降水阈值研究[J]. 灾害学,2022,37(1):83 − 91. [LIU Jia,GUO Haiyan,DENG Guowei,et al. Study on precipitation threshold of geological disasters along Sichuan section of Sichuan-Tibet railway[J]. Journal of Catastrophology,2022,37(1):83 − 91. (in Chinese with English abstract)]
LIU Jia, GUO Haiyan, DENG Guowei, et al. Study on precipitation threshold of geological disasters along Sichuan section of Sichuan-Tibet railway[J]. Journal of Catastrophology, 2022, 37(1): 83 − 91. (in Chinese with English abstract)
[6] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)]
JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)
[7] 樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)]
FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 2018, 26(2): 340 − 347. (in Chinese with English abstract)
[8] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai,LING Sixiang,LI Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract)]
ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595 − 1610. (in Chinese with English abstract)
[9] 栗泽桐,王涛,周杨,等. 基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究:以青海沙塘川流域为例[J]. 现代地质,2019,33(1):235 − 245. [LI Zetong,WANG Tao,ZHOU Yang,et al. Landslide susceptibility assessment based on information value model,logistic regression model and their integrated model:A case in Shatang River Basin,Qinghai Province[J]. Geoscience,2019,33(1):235 − 245. (in Chinese with English abstract)]
LI Zetong, WANG Tao, ZHOU Yang, et al. Landslide susceptibility assessment based on information value model, logistic regression model and their integrated model: A case in Shatang River Basin, Qinghai Province[J]. Geoscience, 2019, 33(1): 235 − 245. (in Chinese with English abstract)
[10] 许冲,戴福初,姚鑫,等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊2):3978 − 3985. [XU Chong,DAI Fuchu,YAO Xin,et al. Evaluation of landslide susceptibility in Wenchuan earthquake area based on analytic hierarchy process supported by GIS[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup 2):3978 − 3985. (in Chinese with English abstract)]
XU Chong, DAI Fuchu, YAO Xin, et al. Evaluation of landslide susceptibility in Wenchuan earthquake area based on analytic hierarchy process supported by GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 2): 3978 − 3985. (in Chinese with English abstract)
[11] 刘宇恒,邓辉,熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. 长江科学院院报,2017,34(5):31 − 35. [LIU Yuheng,DENG Hui,XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County,Sichuan,China[J]. Journal of Yangtze River Scientific Research Institute,2017,34(5):31 − 35. (in Chinese with English abstract)]
LIU Yuheng, DENG Hui, XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County, Sichuan, China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 31 − 35. (in Chinese with English abstract)
[12] 李志国,徐涛,刘永杰,等. 露天矿边坡稳定性的层次分析-模糊综合评价耦合分析[J]. 中国地质灾害与防治学报,2024,35(1):116 − 123. [LI Zhiguo,XU Tao,LIU Yongjie,et al. Open-pit mine slopes stability analysis based on analytic hierarchy process-fuzzy comprehensive evaluation model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):116 − 123. (in Chinese with English abstract)]
LI Zhiguo, XU Tao, LIU Yongjie, et al. Open-pit mine slopes stability analysis based on analytic hierarchy process-fuzzy comprehensive evaluation model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 116 − 123. (in Chinese with English abstract)
[13] DEMIR G,AYTEKIN M,AKGÜN A,et al. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods[J]. Natural Hazards,2013,65(3):1481 − 1506.
[14] JIANG Weiguo,RAO Pingzeng,CAO Ran,et al. Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation[J]. Journal of Geographical Sciences,2017,27(4):439 − 462.
[15] ADITIAN A,KUBOTA T,SHINOHARA Y. Comparison of GIS-based landslide susceptibility models using frequency ratio,logistic regression,and artificial neural network in a tertiary[J]. Geomorphology,2018,318:101 − 111. doi: 10.1016/j.geomorph.2018.06.006
[16] 郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)]
GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287 − 300. (in Chinese with English abstract)
[17] GORSEVSKI P V,BROWN M K,PANTER K,et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach:A case study in the Cuyahoga Valley National Park,Ohio[J]. Landslides,2016,13(3):467 − 484.
[18] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese with English abstract)]
TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304 − 2316. (in Chinese with English abstract)
[19] KAVZOGLU T,SAHIN E K,COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis,support vector machines,and logistic regression[J]. Landslides,2014,11(3):425 − 439.
[20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价——以三峡库区湖北段为例[J]. 地球科学,2021,46(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science,2021,46(1):321 − 330. (in Chinese with English abstract)]
WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321 − 330. (in Chinese with English abstract)
[21] 刘帅,朱杰勇,杨得虎,等. 基于斜坡单元与随机森林模型的元阳县崩滑地质灾害易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):144 − 150. [LIU Shuai,ZHU Jieyong,YANG Dehu,et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):144 − 150. (in Chinese with English abstract)]
LIU Shuai, ZHU Jieyong, YANG Dehu, et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 144 − 150. (in Chinese with English abstract)
[22] 李文彬,范宣梅,黄发明,等. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学,2021,46(10):3777 − 3795. [LI Wenbin,FAN Xuanmei,HUANG Faming,et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science,2021,46(10):3777 − 3795. (in Chinese with English abstract)]
LI Wenbin, FAN Xuanmei, HUANG Faming, et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science, 2021, 46(10): 3777 − 3795. (in Chinese with English abstract)
[23] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价——以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract)]
WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning: Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817 − 828. (in Chinese with English abstract)
[24] 姜晓玲,李莹,肖诗荣. 基于I-ABC-LightGBM耦合模型的长阳县地质灾害易发性评价[J/OL]. 地质通报, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. [JIANG Xiaoling, LI Ying, XIAO Shirong. Evaluation of Geological Hazard Susceptibility in Changyang County Based on I-ABC-LightGBM Coupled Model [J/OL]. Geological Bulletin of China, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. (in Chinese with English abstract)]
JIANG Xiaoling, LI Ying, XIAO Shirong. Evaluation of Geological Hazard Susceptibility in Changyang County Based on I-ABC-LightGBM Coupled Model [J/OL]. Geological Bulletin of China, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. (in Chinese with English abstract)
[25] CARRARA A,CARDINALI M,DETTI R,et al. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms,1991,16(5):427 − 445.
[26] 宋德光,吴瑞安,马德芹,等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185 − 2197. [SONG Deguang,WU Ruian,MA Deqin,et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185 − 2197. (in Chinese with English abstract)]
SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185 − 2197. (in Chinese with English abstract)
[27] 李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology,2023,42(3):81 − 92. (in Chinese with English abstract)]
LI Xing, YANG Sai, LI Yuanyao, et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81 − 92. (in Chinese with English abstract)
[28] 田述军,张珊珊,唐青松,等. 基于不同评价单元的滑坡易发性评价对比研究[J]. 自然灾害学报,2019,28(6):137 − 145. [TIAN Shujun,ZHANG Shanshan,TANG Qingsong,et al. Comparative study of landslide susceptibility assessment based on different evaluation units[J]. Journal of Natural Disasters,2019,28(6):137 − 145. (in Chinese with English abstract)]
TIAN Shujun, ZHANG Shanshan, TANG Qingsong, et al. Comparative study of landslide susceptibility assessment based on different evaluation units[J]. Journal of Natural Disasters, 2019, 28(6): 137 − 145. (in Chinese with English abstract)
[29] 陈锡锐,刘虹强,杨剑红,等. 震裂滑移式崩塌运动特征分析:以张家沟2#崩塌为例[J]. 水利水电技术(中英文),2023,54(4):140 − 150. [CHEN Xirui,LIU Hongqiang,YANG Jianhong,et al. Analysis on the motion characteristics of seismic crack sliding collapse:Taking Zhangjiagou 2 collapse as an example[J]. Water Resources and Hydropower Engineering,2023,54(4):140 − 150. (in Chinese with English abstract)]
CHEN Xirui, LIU Hongqiang, YANG Jianhong, et al. Analysis on the motion characteristics of seismic crack sliding collapse: Taking Zhangjiagou 2 collapse as an example[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 140 − 150. (in Chinese with English abstract)
[30] 洪增林,李永红,张玲玉,等. 一种基于主成分分析法的区域性地质灾害危险性评估方法[J]. 灾害学,2020,35(1):118 − 124. [HONG Zenglin,LI Yonghong,ZHANG Lingyu,et al. A method of regional geological hazard assessment based on principle component analysis[J]. Journal of Catastrophology,2020,35(1):118 − 124. (in Chinese with English abstract)]
HONG Zenglin, LI Yonghong, ZHANG Lingyu, et al. A method of regional geological hazard assessment based on principle component analysis[J]. Journal of Catastrophology, 2020, 35(1): 118 − 124. (in Chinese with English abstract)
[31] 尚敏,廖芬,马锐,等. 白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报,2021,29(3):742 − 750. [SHANG Min,LIAO Fen,MA Rui,et al. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology,2021,29(3):742 − 750. (in Chinese with English abstract)]
SHANG Min, LIAO Fen, MA Rui, et al. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology, 2021, 29(3): 742 − 750. (in Chinese with English abstract)
-