Comparative analysis of landslide susceptibility evaluation models based on coefficient of determination method:A case study of Baoshan Basin, Yunnan Province
-
摘要:
随着保山盆地城市化进程的不断推进,当地地质条件逐渐恶化,滑坡灾害频发,为了提供切合实际的防治建议,文章对研究区进行滑坡易发性评价。据区域地质背景、人类活动及灾害发育特征,选取海拔、坡度、坡向、归一化植被覆盖度、工程地质岩组、距道路距离、距断层距离、距水系距离、灾害点密度共9个评价因子。建立确定性系数法模型(CF)、确定性系数法与层次分析法耦合模型(CF-AHP)、确定性系数法与熵指数法耦合模型(CF-IOE)及确定性系数法与距离函数法-组合权重耦合模型(CF-AHP-IOE)。结果显示:CF、CF-AHP、CF-IOE、CF-AHP-IOE模型滑坡易性发分级的灾害密度及频率比值显著增加,均有效对研究区进行滑坡易发性评价;4种模型AUC值分别为0.890、0.911、0.921、0.916,耦合模型具有更高评价精度;其中CF-AHP-IOE模型在极高易发区频率比值与灾害数量占比90%以上,说明了主、客赋权更加合理。研究可为保山盆地城市化进程提供地质灾害防治建议。
-
关键词:
- 滑坡易发性评价 /
- 确定性系数法 /
- 层次分析法 /
- 熵指数法 /
- 距离函数-组合权重法
Abstract:As urbanization continues to progress in the Baoshan Basin, geological conditions have deteriorated and leading to frequent landslide natural hazards. To provide prevention and control recommendations, landslide susceptibility assessment was carried out in the study area. Nine evaluation factors, including elevation, slope, slope direction, normalized vegetation cover (NDVI), engineering geological rock group, distance from roads, distance from faults, distance from water systems, and density of disaster sites, were selected based on the regional geological background, human activities and disaster development characteristics. Four models were established: deterministic coefficient method (CF), the coupled model of deterministic coefficient method and hierarchical analysis method (CF-AHP), the coupled model of deterministic coefficient method and index of entropy method (CF-IOE), and the coupled model of deterministic coefficient method and distance function-combined weights method (CF-AHP-IOE). The results show that the hazard density and frequency ratios of CF, CF-AHP, CF-IOE, and CF-AHP-IOE models landslide susceptibility grading have significantly increased, effectively assessing the landslide susceptibility in the study area. The AUC values of the three models were 0.890, 0.911, 0.921, and 0.916, respectively, indicating higher evaluation accuracy for the coupled models. Among them, the CF-AHP-IOE model has a ratio of disaster frequency and disaster quantity exceeding 90% in the extremely high susceptibility zone, demonstrating a more reasonable weighting approach. The study can provide preemptive recommendations for the urbanization process in the Baoshan Basin.
-
-
表 1 评价指标因子相关系数矩阵
Table 1. Matrix of correlation coefficients of evaluation indicator factors
评价因子 海拔 坡度 坡向 NDVI 工程地质岩组 道路 断层 水系 灾害点密度 海拔 1 0.471 −0.017 0.412 0.272 0.325 −0.100 −0.162 −0.132 坡度 1 −0.001 0.402 0.269 0.070 −0.188 −0.382 0.008 坡向 1 −0.088 0.127 −0.025 −0.042 0.062 0.020 NDVI 1 0.203 0.159 −0.150 −0.264 −0.018 工程地质岩组 1 −0.061 −0.259 −0.252 0.176 道路 1 0.030 0.162 −0.146 断层 1 0.227 −0.156 水系 1 −0.126 灾害点密度 1 表 2 评价因子判断矩阵及权重值
Table 2. Judgment matrix and weight values of evaluation factors
评价因子 海拔 坡度 坡向 归一化植被覆盖度 工程地质岩组 道路 断层 水系 灾害点密度 Wi 海拔 1 1/7 1/2 1/3 1/6 1/4 1/5 1/2 1/8 0.024 坡度 1 5 3 1/3 1 1 2 1/4 0.115 坡向 1 1 1/6 1/2 1/3 1/2 1/8 0.036 归一化植被覆盖度 1 1/5 1 1/2 1 1/6 0.052 工程地质岩组 1 4 2 3 1/3 0.202 道路 1 1/2 1 1/5 0.068 断层 1 2 1/4 0.106 水系 1 1/5 0.058 灾害点密度 1 0.339 表 3 不同模型AUC值
Table 3. AUC values of different models
剔除因子 未剔除 海拔 海拔、NDVI 海拔、NDVI、水系 AUC值 0.890 0.875 0.871 0.871 表 4 评价因子确定性系数值及权重值
Table 4. Coefficient of determination values and weight values for evaluation factors
评价因子 状态分级 $ CF $ $ {W}_{i-{\mathrm{AHP}}} $ $ {W}_{i-{\mathrm{IOE}}} $ $ {W}_{i-{\mathrm{AHP -IOE}}} $ 评价因子 状态分级 $ CF $ $ {W}_{i-{\mathrm{AHP}}} $ $ {W}_{i-{\mathrm{IOE}}} $ $ {W}_{i-{\mathrm{AHP -IOE}}} $ 海拔/m 1582 ~1724 −0.357 0.024 0.116 0.067 0.8~1 −0.827 1724 ~1960 0.658 工程地质岩组 松散土体 −0.282 0.202 0.042 0.126 1 960~ 2167 0.280 碎屑岩岩组 −0.260 2167 ~2394 −0.463 碳酸盐岩岩组 0.122 2394 ~2644 −1.000 碳酸盐岩夹碎屑岩组 0.605 2644 ~3098 −1.000 变质岩岩组 −0.127 坡度/(°) 0~8 −0.765 0.115 0.026 0.073 岩浆岩岩组 0.687 8~16 0.374 距道路距离/m 0~300 0.601 0.068 0.035 0.052 16~24 0.336 300~600 0.453 24~32 0.273 600~900 −0.215 32~40 0.007 900~ 1200 0.115 >40 0.332 > 1200 −0.443 坡向 平面 −1.000 0.036 0.031 0.034 距断层距离/m 0~300 0.437 0.106 0.021 0.066 北 −0.420 300~600 0.471 东北 −0.228 600~900 0.451 东 0.149 900~ 1200 0.299 东南 −0.448 > 1200 −0.439 南 0.152 距水系距离/m 0~200 0.651 0.058 0.066 0.062 西南 0.350 200~400 0.144 西 0.337 400~600 −0.179 西北 −0.096 600~800 −0.678 归一化植被
覆盖度0~0.2 −1.000 0.052 0.092 0.071 >800 −0.634 0.2~0.4 −0.312 灾害点密度/km2 0 −1.000 0.339 0.572 0.449 0.4~0.6 0.394 0~1 0.808 0.6~0.8 0.386 1~2.11 0.958 表 5 CF、CF-AHP、CF-IOE、CF-AHP-IOE模型分级结果
Table 5. Grading results of CF, CF-AHP 、CF-IOE、CF-AHP-IOE models
评价模型 易发分区 分级面积/km2 面积占比/% 灾害频数 灾害占比/% 灾害密度/km2 频率比值 频率比值占比/% CF 低 241.328 31.6 1 1.0 0.004 0.032 0.53 中 208.166 27.2 5 5.1 0.024 0.186 3.10 高 198.697 26.0 14 14.1 0.070 0.544 9.07 极高 116.628 15.2 79 79.8 0.677 5.233 87.29 CF-AHP 低 365.938 47.8 0 0 0 0 0 中 197.212 25.8 1 1.0 0.005 0.039 0.50 高 107.775 14.1 22 22.2 0.204 1.577 20.04 极高 93.894 12.3 76 76.8 0.809 6.253 79.46 CF-IOE 低 371.350 48.6 0 0 0 0 0 中 201.359 26.3 1 1.0 0.005 0.038 0.51 高 86.153 11.3 15 15.2 0.174 1.345 18.09 极高 105.957 13.9 83 83.8 0.783 6.052 81.40 CF-AHP-IOE 低 300.304 39.3 0 0 0 0 0 中 202.226 26.4 0 0 0 0 0 高 130.706 17.1 9 9.1 0.069 0.532 9.15 极高 131.584 17.2 90 90.9 0.684 5.284 90.85 -
[1] 范林峰,胡瑞林,曾逢春,等. 加权信息量模型在滑坡易发性评价中的应用——以湖北省恩施市为例[J]. 工程地质学报,2012,20(4):508 − 513. [FAN Linfeng,HU Ruilin,ZENG Fengchun,et al. Application of weighted information value model to landslide susceptibility assessment:A case study of Enshi City,Hubei Province[J]. Journal of Engineering Geology,2012,20(4):508 − 513. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2012.04.005
FAN Linfeng, HU Ruilin, ZENG Fengchun, et al. Application of weighted information value model to landslide susceptibility assessment: A case study of Enshi City, Hubei Province[J]. Journal of Engineering Geology, 2012, 20(4): 508 − 513. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.04.005
[2] 韩金良,吴树仁,李东林,等. 秦巴地区地质灾害的分布规律与成因[J]. 地质科技情报,2007,26(1):101 − 108. [HAN Jinliang,WU Shuren,LI Donglin,et al. Distribution regularities and contributing factor of geological hazards in Qinling-Daba mountains[J]. Geological Science and Technology Information,2007,26(1):101 − 108. (in Chinese with English abstract)]
HAN Jinliang, WU Shuren, LI Donglin, et al. Distribution regularities and contributing factor of geological hazards in Qinling-Daba mountains[J]. Geological Science and Technology Information, 2007, 26(1): 101 − 108. (in Chinese with English abstract)
[3] 许冲,戴福初,姚鑫,等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊2):3978 − 3985. [XU Chong,DAI Fuchu,YAO Xin,et al. Gis-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup 2):3978 − 3985. (in Chinese with English abstract)]
XU Chong, DAI Fuchu, YAO Xin, et al. Gis-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 2): 3978 − 3985. (in Chinese with English abstract)
[4] 王雷,吴君平,赵冰雪,等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei,WU Junping,ZHAO Bingxue,et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)]
WANG Lei, WU Junping, ZHAO Bingxue, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 96 − 103. (in Chinese with English abstract)
[5] 周萍,邓辉,张文江,等. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学,2022,42(9):1665 − 1675. [ZHOU Ping,DENG Hui,ZHANG Wenjiang,et al. Landslide susceptibility evaluation based on information value model and machine learning method:A case study of Lixian County,Sichuan Province[J]. Scientia Geographica Sinica,2022,42(9):1665 − 1675. (in Chinese with English abstract)]
ZHOU Ping, DENG Hui, ZHANG Wenjiang, et al. Landslide susceptibility evaluation based on information value model and machine learning method: A case study of Lixian County, Sichuan Province[J]. Scientia Geographica Sinica, 2022, 42(9): 1665 − 1675. (in Chinese with English abstract)
[6] 张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract)]
ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157 − 171. (in Chinese with English abstract)
[7] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)]
TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96 − 104. (in Chinese with English abstract)
[8] 吴森,张文,刘民生. 西藏地区崩塌滑坡影响因子敏感性分析[J]. 中国地质灾害与防治学报,2023,34(3):109 − 117. [WU Sen,ZHANG Wen,LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):109 − 117. (in Chinese with English abstract)]
WU Sen, ZHANG Wen, LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 109 − 117. (in Chinese with English abstract)
[9] 李利峰,张晓虎,邓慧琳,等. 基于熵指数与逻辑回归耦合模型的滑坡灾害易发性评价——以蓝田县为例[J]. 科学技术与工程,2020,20(14):5536 − 5543. [LI Lifeng,ZHANG Xiaohu,DENG Huilin,et al. Assessment of landslide susceptibility based on coupling model of index of entropy and logistic regression:A case study of Lantian County[J]. Science Technology and Engineering,2020,20(14):5536 − 5543. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2020.14.012
LI Lifeng, ZHANG Xiaohu, DENG Huilin, et al. Assessment of landslide susceptibility based on coupling model of index of entropy and logistic regression: A case study of Lantian County[J]. Science Technology and Engineering, 2020, 20(14): 5536 − 5543. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.14.012
[10] 祁于娜,王磊. 层次分析-熵值定权法应用于山区城镇地质灾害易发性评价[J]. 测绘通报,2021(6):112 − 116. [QI Yuna,WANG Lei. Application of AHP-entropy weight method in hazards susceptibility assessment in mountain town[J]. Bulletin of Surveying and Mapping,2021(6):112 − 116. (in Chinese with English abstract)]
QI Yuna, WANG Lei. Application of AHP-entropy weight method in hazards susceptibility assessment in mountain town[J]. Bulletin of Surveying and Mapping, 2021(6): 112 − 116. (in Chinese with English abstract)
[11] 张晨,王清,陈剑平,等. 金沙江流域泥石流的组合赋权法危险度评价[J]. 岩土力学,2011,32(3):831 − 836. [ZHANG Chen,WANG Qing,CHEN Jianping,et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics,2011,32(3):831 − 836. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2011.03.032
ZHANG Chen, WANG Qing, CHEN Jianping, et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics, 2011, 32(3): 831 − 836. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.03.032
[12] 范强,巨能攀,向喜琼,等. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报,2014,22(3):474 − 481. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Landslides hazards assessment with weights of evidence:A case study in Guizhou,China[J]. Journal of Engineering Geology,2014,22(3):474 − 481. (in Chinese with English abstract)] doi: 10.13544/j.cnki.jeg.2014.03.017
FAN Qiang, JU Nengpan, XIANG Xiqiong, et al. Landslides hazards assessment with weights of evidence: A case study in Guizhou, China[J]. Journal of Engineering Geology, 2014, 22(3): 474 − 481. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2014.03.017
[13] 张林梵,王佳运,张茂省,等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质,2022,55(2):260 − 270. [ZHANG Linfan,WANG Jiayun,ZHANG Maosheng,et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology,2022,55(2):260 − 270. (in Chinese with English abstract)]
ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260 − 270. (in Chinese with English abstract)
[14] 郑迎凯,陈建国,王成彬,等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报,2020,39(6):131 − 144. [ZHENG Yingkai,CHEN Jianguo,WANG Chengbin,et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City,Yunnan Province[J]. Bulletin of Geological Science and Technology,2020,39(6):131 − 144. (in Chinese with English abstract)]
ZHENG Yingkai, CHEN Jianguo, WANG Chengbin, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131 − 144. (in Chinese with English abstract)
[15] 盛明强,刘梓轩,张晓晴,等. 基于频率比联接法和支持向量机的滑坡易发性预测[J]. 科学技术与工程,2021,21(25):10620 − 10628. [SHENG Mingqiang,LIU Zixuan,ZHANG Xiaoqing,et al. Landslide susceptibility prediction based on frequency ratio analysis and support vector machine[J]. Science Technology and Engineering,2021,21(25):10620 − 10628. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2021.25.009
SHENG Mingqiang, LIU Zixuan, ZHANG Xiaoqing, et al. Landslide susceptibility prediction based on frequency ratio analysis and support vector machine[J]. Science Technology and Engineering, 2021, 21(25): 10620 − 10628. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2021.25.009
[16] 侯鹏鹂. 岷江上游区域泥石流发育规律与易发性评价[D]. 绵阳:西南科技大学,2022. [HOU Pengli. Development law and susceptibility evaluation of debris flow in the upper reaches of Minjiang River[D]. Mianyang:Southwest University of Science and Technology,2022. (in Chinese with English abstract)]
HOU Pengli. Development law and susceptibility evaluation of debris flow in the upper reaches of Minjiang River[D]. Mianyang: Southwest University of Science and Technology, 2022. (in Chinese with English abstract)
[17] 冯杭建,周爱国,唐小明,等. 基于确定性系数的降雨型滑坡影响因子敏感性分析[J]. 工程地质学报,2017,25(2):436 − 446. [FENG Hangjian,ZHOU Aiguo,TANG Xiaoming,et al. Susceptibility analysis of factors controlling rainfalltriggered landslides using certainty factor method[J]. Journal of Engineering Geology,2017,25(2):436 − 446. (in Chinese with English abstract)] doi: 10.13544/j.cnki.jeg.2017.02.022
FENG Hangjian, ZHOU Aiguo, TANG Xiaoming, et al. Susceptibility analysis of factors controlling rainfalltriggered landslides using certainty factor method[J]. Journal of Engineering Geology, 2017, 25(2): 436 − 446. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.02.022
[18] 李苗苗,吴炳方,颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学,2004,26(4):153 − 159. [LI Miaomiao,WU Bingfang,YAN Changzhen,et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing[J]. Resources Science,2004,26(4):153 − 159. (in Chinese with English abstract)] doi: 10.3321/j.issn:1007-7588.2004.04.022
LI Miaomiao, WU Bingfang, YAN Changzhen, et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing[J]. Resources Science, 2004, 26(4): 153 − 159. (in Chinese with English abstract) doi: 10.3321/j.issn:1007-7588.2004.04.022
[19] 孟凡奇,高峰,林波,等. 基于AHP和信息量模型的地质灾害易发性评价——以鲁东片区为例[J]. 灾害学,2023,38(3):111 − 117. [MENG Fanqi,GAO Feng,LIN Bo,et al. Evaluation of geological disaster susceptibility in eastern Shandong based on AHP and information model[J]. Journal of Catastrophology,2023,38(3):111 − 117. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-811X.2023.03.018
MENG Fanqi, GAO Feng, LIN Bo, et al. Evaluation of geological disaster susceptibility in eastern Shandong based on AHP and information model[J]. Journal of Catastrophology, 2023, 38(3): 111 − 117. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2023.03.018
[20] 陈宾,魏娜,张联志,等. 基于斜坡单元灾害强度的滑坡灾害易损性评价——以湖南省湘乡市为例[J]. 中国地质灾害与防治学报,2024,23(2):137-145. [CHEN Bin,WEI Na,ZHANG Lianzhi,et al. Evaluation of landslide disaster vulnerability based on the hazard intensity of slope unit:A case study of Xiangxiang City,Hunan Province[J]. The Chinese Journal of Geological Hazards and Control,2024,23(2):137-145. (in Chinese with English abstract)]
CHEN Bin, WEI Na, ZHANG Lianzhi, et al. Evaluation of landslide disaster vulnerability based on the hazard intensity of slope unit: A case study of Xiangxiang City, Hunan Province[J]. The Chinese Journal of Geological Hazards and Control, 2024,23(2): 137-145. (in Chinese with English abstract)
[21] 张书豪,吴光,张乔,等. 基于子流域特征的泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):142 − 149. [ZHANG Shuhao,WU Guang,ZHANG Qiao,et al. Debris-flow susceptibility assessment using the characteristic factors of a catchment[J]. Hydrogeology & Engineering Geology,2018,45(2):142 − 149. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.2018.02.22
ZHANG Shuhao, WU Guang, ZHANG Qiao, et al. Debris-flow susceptibility assessment using the characteristic factors of a catchment[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 142 − 149. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.02.22
[22] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]
ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)
-