中国地质环境监测院
中国地质灾害防治工程行业协会
主办

含断层偏压隧道围岩变形机理及支护方案优化

刘晓龙, 孙闯, 王慧, 张维明, 郑兴炫, 王毅婷. 含断层偏压隧道围岩变形机理及支护方案优化[J]. 中国地质灾害与防治学报, 2025, 36(1): 108-118. doi: 10.16031/j.cnki.issn.1003-8035.202306014
引用本文: 刘晓龙, 孙闯, 王慧, 张维明, 郑兴炫, 王毅婷. 含断层偏压隧道围岩变形机理及支护方案优化[J]. 中国地质灾害与防治学报, 2025, 36(1): 108-118. doi: 10.16031/j.cnki.issn.1003-8035.202306014
LIU Xiaolong, SUN Chuang, WANG Hui, ZHANG Weiming, ZHENG Xingxuan, WANG Yiting. Deformation mechanism and optimum supporting structures in fault-bearing biased tunnels[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 108-118. doi: 10.16031/j.cnki.issn.1003-8035.202306014
Citation: LIU Xiaolong, SUN Chuang, WANG Hui, ZHANG Weiming, ZHENG Xingxuan, WANG Yiting. Deformation mechanism and optimum supporting structures in fault-bearing biased tunnels[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 108-118. doi: 10.16031/j.cnki.issn.1003-8035.202306014

含断层偏压隧道围岩变形机理及支护方案优化

详细信息
    作者简介: 刘晓龙(2001—),男,山西吕梁人,硕士研究生,主要从事隧道工程数值计算方面的研究工作。E-mail:lxl321433714@163.com
    通讯作者: 孙 闯(1983—),男,辽宁阜新人,教授,主要从事隧道及地下工程稳定性控制方面的研究工作。E-mail:sunchuang88@163.com
  • 中图分类号: U451+.2;P694

Deformation mechanism and optimum supporting structures in fault-bearing biased tunnels

More Information
  • 为探明复杂地质条件下隧道围岩变形机理,制定相适应的围岩变形控制技术,以清泉隧道为工程依托,对偏压隧道洞口段围岩变形进行分析,基于FLAC3D研究有无断层条件下不同支护状态围岩稳定性,明确围岩变形机理并提出控制措施。研究表明:(1)偏压效应下后行洞开挖扰动使上覆围岩与断层带相交层面张开、层间岩体弯折破裂,围岩应力重分布且断层破碎带进一步恶化,导致围岩变形严重;(2)软弱围岩自稳能力差,二次应力作用使得小净距隧道顶拱、边墙围岩产生可持续塑性变形,伴随着时间效应,对支护结构逐渐产生挤压变形,现有支护方案不能提供足够的支护强度和刚度以抵抗围岩变形;(3)提出的坡面锚索+深埋侧抗滑桩复合控制措施,可有效控制围岩变形,减弱断层破碎带恶化对围岩稳定性影响,数值计算结果与现场监测结果较为吻合。研究结果可为类似复杂地质条件下隧道围岩变形控制提供参考。

  • 加载中
  • 图 1  地质剖面图

    Figure 1. 

    图 2  洞口段坡面破坏

    Figure 2. 

    图 3  三维模型示意图

    Figure 3. 

    图 4  试件及试验装置

    Figure 4. 

    图 5  计算结果位移云图

    Figure 5. 

    图 6  沉降监测曲线

    Figure 6. 

    图 7  收敛监测曲线

    Figure 7. 

    图 8  计算结果位移云图

    Figure 8. 

    图 9  不同围岩变形支护方案下拱顶沉降量

    Figure 9. 

    图 10  控制方案设计

    Figure 10. 

    图 11  施加最优控制方案后围岩变形控制效果

    Figure 11. 

    图 12  现场施工效果

    Figure 12. 

    图 13  现场洞口断面沉降监测曲线

    Figure 13. 

    表 1  计算模型力学参数

    Table 1.  Mechanical parameters of the computational model

    材料 E/GPa υ $m_{\mathrm{b}}^{\mathrm{p}} $ sp/(10−3 mbr sr/(10−3 η*
    黄土 3.02 0.25 0.83 0.4 0.69 0.2 0.012
    片麻岩 4.89 0.25 1.17 1.3 0.73 0.3 0.0038
    花岗岩 8.66 0.25 1.68 3.9 0.82 0.4 0.002
    下载: 导出CSV

    表 2  各控制方案及数值计算模型

    Table 2.  Various control schemes and numerical calculation models

    模拟工况 支护参数 支护模型图
    支护方案A 现行隧道支护方案+坡面锚索
    支护方案B 现行隧道支护方案+深埋侧抗滑桩(间距8 m)
    支护方案C 现行隧道支护方案+坡面锚索(倾角15°)+深埋侧抗滑桩(间距8 m)
    下载: 导出CSV

    表 3  材料参数表

    Table 3.  Table of material parameters

    材料 γ/(kN∙m−3 E/MPa v c/kPa φ/(°)
    抗滑桩 25.0 32500 0.2
    锚索 22.0 1800 0.35 30 25
    下载: 导出CSV

    表 4  不同支护参数拱顶沉降量对比表

    Table 4.  Comparison of vault settlement at the arch crown with different control parameters

    支护
    参数
    抗滑桩
    桩长/m
    锚索
    倾角/(°)
    锚固段
    长度/m
    锚索预
    应力/kN
    后行洞拱顶
    沉降/mm
    1 10 15 6 50 68.3
    2 15 20 9 100 65.7
    3 20 25 12 150 59.4
    4 25 30 15 200 53.5
    5 30 35 18 250 51.3
    下载: 导出CSV
  • [1]

    付君宜,陈发达,沈志平,等. 岩溶山区城市地下隧道工程地质灾害风险分析[J]. 中国地质灾害与防治学报,2023,34(3):100 − 108. [FU Junyi,CHEN Fada,SHEN Zhiping,et al. Risk analysis of the geological hazards during urban tunnel construction in mountainous Karst areas[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):100 − 108. (in Chinese with English abstract)]

    FU Junyi, CHEN Fada, SHEN Zhiping, et al. Risk analysis of the geological hazards during urban tunnel construction in mountainous Karst areas[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 100 − 108. (in Chinese with English abstract)

    [2]

    昝文博,赖金星,曹校勇,等. 漂卵石隧道围岩力学响应与失稳破坏机制[J]. 岩石力学与工程学报,2021,40(8):1643 − 1653. [ZAN Wenbo,LAI Jinxing,CAO Xiaoyong,et al. Mechanical responses and instability failure mechanisms of surrounding rock of tunnels in boulder-cobble mixed stratum[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1643 − 1653. (in Chinese with English abstract)]

    ZAN Wenbo, LAI Jinxing, CAO Xiaoyong, et al. Mechanical responses and instability failure mechanisms of surrounding rock of tunnels in boulder-cobble mixed stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1643 − 1653. (in Chinese with English abstract)

    [3]

    岳中琦. 梅大高速公路路基边坡失稳条件与滑坡机理初探[J]. 中国地质灾害与防治学报,2024,35(4):1 − 12. [YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):1 − 12. (in Chinese with English abstract)]

    YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 1 − 12. (in Chinese with English abstract)

    [4]

    胡炜, 谭信荣, 蒋尧, 等. 深埋顺层偏压隧道围岩破坏机理及规律研究——以郑万线某隧道为例[J]. 水文地质工程地质,2020,47(3):60 − 68. [HU Wei, TAN Xinrong, JIANG Yao, et al. A study of the mechanism and regularity of failures in the surrounding rock of a deep buried bias tunnel embedded in geologically bedding strata: Taking one tunnel of the Zhengwan line as an example[J]. Hydrogeology & Engineering Geology,2020,47(3):60 − 68. (in Chinese with English abstract)]

    HU Wei, TAN Xinrong, JIANG Yao, et al. A study of the mechanism and regularity of failures in the surrounding rock of a deep buried bias tunnel embedded in geologically bedding strata: Taking one tunnel of the Zhengwan line as an example[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 60 − 68. (in Chinese with English abstract)

    [5]

    杜建明,房倩. 考虑黏聚力与内摩擦角的变坡面浅埋偏压隧道围岩压力计算方法[J]. 湖南大学学报(自然科学版),2022,49(1):165 − 173. [DU Jianming,FANG Qian. Calculation method of surrounding rock pressure of shallow-buried and asymmetrical pressure tunnel under variable slopes considering cohesion and internal friction angle[J]. Journal of Hunan University (Natural Sciences),2022,49(1):165 − 173. (in Chinese with English abstract)]

    DU Jianming, FANG Qian. Calculation method of surrounding rock pressure of shallow-buried and asymmetrical pressure tunnel under variable slopes considering cohesion and internal friction angle[J]. Journal of Hunan University (Natural Sciences), 2022, 49(1): 165 − 173. (in Chinese with English abstract)

    [6]

    康永水,耿志,刘泉声,等. 我国软岩大变形灾害控制技术与方法研究进展[J]. 岩土力学,2022,43(8):2035 − 2059. [KANG Yongshui,GENG Zhi,LIU Quansheng,et al. Research progress on support technology and methods for soft rock with large deformation hazards in China[J]. Rock and Soil Mechanics,2022,43(8):2035 − 2059. (in Chinese with English abstract)]

    KANG Yongshui, GENG Zhi, LIU Quansheng, et al. Research progress on support technology and methods for soft rock with large deformation hazards in China[J]. Rock and Soil Mechanics, 2022, 43(8): 2035 − 2059. (in Chinese with English abstract)

    [7]

    严涛,李坤杰,牟智恒,等. 变坡条件下浅埋偏压隧道围岩压力解析法[J]. 西南交通大学学报,2020,55(3):531 − 536. [YAN Tao,LI Kunjie,MOU Zhiheng,et al. Analytical method for calculation of surrounding rock pressure of shallow-buried and unsymmetrically loaded tunnel adjacent to variable slope[J]. Journal of Southwest Jiaotong University,2020,55(3):531 − 536. (in Chinese with English abstract)]

    YAN Tao, LI Kunjie, MOU Zhiheng, et al. Analytical method for calculation of surrounding rock pressure of shallow-buried and unsymmetrically loaded tunnel adjacent to variable slope[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 531 − 536. (in Chinese with English abstract)

    [8]

    池建军,刘登学,丁秀丽,等. 第三系泥岩隧洞围岩大变形成因及应对措施[J]. 长江科学院院报,2022,39(10):88 − 96. [CHI Jianjun,LIU Dengxue,DING Xiuli,et al. Causes and countermeasures of large deformation in a tunnel with tertiary mudstone[J]. Journal of Yangtze River Scientific Research Institute,2022,39(10):88 − 96. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20211286

    CHI Jianjun, LIU Dengxue, DING Xiuli, et al. Causes and countermeasures of large deformation in a tunnel with tertiary mudstone[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 88 − 96. (in Chinese with English abstract) doi: 10.11988/ckyyb.20211286

    [9]

    张广泽,邓建辉,王栋,等. 隧道围岩构造软岩大变形发生机理及分级方法[J]. 工程科学与技术,2021,53(1):1 − 12. [ZHANG Guangze,DENG Jianhui,WANG Dong,et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels[J]. Advanced Engineering Sciences,2021,53(1):1 − 12. (in Chinese with English abstract)]

    ZHANG Guangze, DENG Jianhui, WANG Dong, et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels[J]. Advanced Engineering Sciences, 2021, 53(1): 1 − 12. (in Chinese with English abstract)

    [10]

    杜建明,房倩,海路,等. 地表变坡下浅埋偏压隧道围岩压力计算方法[J]. 中南大学学报(自然科学版),2021,52(11):4088 − 4098. [DU Jianming,FANG Qian,HAI Lu,et al. Calculation method for surrounding rock pressure of shallow tunnel with asymmetrical pressure of variable slopes[J]. Journal of Central South University (Science and Technology),2021,52(11):4088 − 4098. (in Chinese with English abstract)]

    DU Jianming, FANG Qian, HAI Lu, et al. Calculation method for surrounding rock pressure of shallow tunnel with asymmetrical pressure of variable slopes[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 4088 − 4098. (in Chinese with English abstract)

    [11]

    邵江,朱宝龙,李涛. 不同滑带角度滑坡作用下隧道衬砌结构受力特征[J]. 西南交通大学学报,2021,56(6):1214 − 1221. [SHAO Jiang,ZHU Baolong,LI Tao. Stress characteristics of tunnel lining structures under landslides with different angles of sliding zone[J]. Journal of Southwest Jiaotong University,2021,56(6):1214 − 1221. (in Chinese with English abstract)]

    SHAO Jiang, ZHU Baolong, LI Tao. Stress characteristics of tunnel lining structures under landslides with different angles of sliding zone[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1214 − 1221. (in Chinese with English abstract)

    [12]

    董建华,颉永斌,李建军,等. 洞口段浅埋偏压隧道新型防护结构及其简化计算方法[J]. 中国公路学报,2018,31(10):339 − 349. [DONG Jianhua,XIE Yongbin,LI Jianjun,et al. New protective structure for shallow-buried bias tunnel at portal section and its simplified calculation method[J]. China Journal of Highway and Transport,2018,31(10):339 − 349. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-7372.2018.10.034

    DONG Jianhua, XIE Yongbin, LI Jianjun, et al. New protective structure for shallow-buried bias tunnel at portal section and its simplified calculation method[J]. China Journal of Highway and Transport, 2018, 31(10): 339 − 349. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2018.10.034

    [13]

    LI Biao,DING Quanfu,XU Nuwen,et al. Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse Caverns at different stress levels[J]. Journal of Central South University,2022,29(2):693 − 711. doi: 10.1007/s11771-022-4946-4

    [14]

    MA Lin. Analysis of shallow bias tunnel influence factors in mountain area[J]. International Congress of Mathematicans,2015.

    [15]

    孔超,张俊儒,王海彦,等. 深埋软岩大变形隧道支护变形特征及承载机理研究[J]. 中国铁道科学,2021,42(6):103 − 111. [KONG Chao,ZHANG Junru,WANG Haiyan,et al. Study on deformation characteristics and bearing mechanism of support in large deformation tunnel with deep buried soft rock[J]. China Railway Science,2021,42(6):103 − 111. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-4632.2021.06.11

    KONG Chao, ZHANG Junru, WANG Haiyan, et al. Study on deformation characteristics and bearing mechanism of support in large deformation tunnel with deep buried soft rock[J]. China Railway Science, 2021, 42(6): 103 − 111. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2021.06.11

    [16]

    陈秋雨, 黄璐, 潘虎, 等. 径向让压系统对软岩隧道围岩力学特性影响研究[J]. 水文地质工程地质,2024,51(4):146 − 156. [CHEN Qiuyu, HUANG Lu, PAN Hu, et al. Enhancing mechanical characteristics of soft rock tunnel surrounding rock through radial yield pressure system[J]. Hydrogeology and Engineering Geology,2024,51(4):146 − 156. (in Chinese with English abstract)]

    CHEN Qiuyu, HUANG Lu, PAN Hu, et al. Enhancing mechanical characteristics of soft rock tunnel surrounding rock through radial yield pressure system[J]. Hydrogeology and Engineering Geology, 2024, 51(4): 146 − 156. (in Chinese with English abstract)

    [17]

    陈东旭. 新奥法隧道支护结构约束效应及破裂失效模型研究[D]. 阜新:辽宁工程技术大学,2021. [CHEN Dongxu. Study on constraint effect and rupture failure model of new Austrian method tunnel support structure[D]. Fuxin:Liaoning Technical University,2021. (in Chinese with English abstract)]

    CHEN Dongxu. Study on constraint effect and rupture failure model of new Austrian method tunnel support structure[D]. Fuxin: Liaoning Technical University, 2021. (in Chinese with English abstract)

    [18]

    孙闯,敖云鹤,张家鸣. 弱节理小净距隧道合理净距及围岩稳定性研究[J]. 公路交通科技,2020,37(5):108 − 115. [SUN Chuang,AO Yunhe,ZHANG Jiaming. Study on reasonable clear distance and surrounding rock stability of weak jointed small clear distance tunnel[J]. Journal of Highway and Transportation Research and Development,2020,37(5):108 − 115. (in Chinese with English abstract)]

    SUN Chuang, AO Yunhe, ZHANG Jiaming. Study on reasonable clear distance and surrounding rock stability of weak jointed small clear distance tunnel[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 108 − 115. (in Chinese with English abstract)

    [19]

    HOEK E,BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165 − 1186. doi: 10.1016/S1365-1609(97)80069-X

    [20]

    ALEJANO L R,RODRIGUEZ-DONO A,ALONSO E,et al. Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour[J]. Tunnelling and Underground Space Technology,2009,24(6):689 − 705. doi: 10.1016/j.tust.2009.07.004

  • 加载中

(13)

(4)

计量
  • 文章访问数:  115
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2023-06-10
修回日期:  2023-12-05
录用日期:  2024-06-18
刊出日期:  2025-02-25

目录