中国地质环境监测院
中国地质灾害防治工程行业协会
主办

高位远程地质灾害研究:回顾与展望

殷跃平, 高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006
引用本文: 殷跃平, 高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006
YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006
Citation: YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18. doi: 10.16031/j.cnki.issn.1003-8035.202310006

高位远程地质灾害研究:回顾与展望

  • 基金项目: 国家自然科学基金项目(U2244227)
详细信息
    作者简介: 殷跃平(1960—),男,研究员,中国工程院院士,从事地质灾害防治与研究工作。E-mail:yinyueping0712@qq.com
  • 中图分类号: P642.2

Research on high-altitude and long-runout rockslides: Review and prospects

  • 在全球范围内,高位远程地质灾害造成了多起群死群伤事件和特大经济损失,是特大型地质灾害防灾减灾科技攻关的难点。文章系统回顾了高位远程地质灾害的研究历程,认为常规的“高速远程滑坡”研究难以适应高山、极高山区复合型地质灾害防灾减灾的要求,提出了从高位失稳、远程成灾和风险防控全链条的高位远程地质灾害研究思路,探讨了高位崩滑启动源区的易灾地质结构特征和早期识别技术、高速碎屑流远程链动机理和边界层效应以及风险评估和防灾减灾问题。通过对青藏高原高山、极高山区的高位远程地质灾害研究,揭示了高位滑坡碎屑流势流体链动传递机理,以及紊流体和犁切体的边界层效应,提出可以通过改造高势能碎屑流体的边界层底坡、增大湍流边界层内湍动能的生成与组合障桩前死区范围的消能降险方法。最后,针对铁路、公路、水电工程、边疆城镇和国防建设的发展,讨论了复合型高位远程滑坡灾害的防灾减灾将面临的新挑战,提出了易灾地质结构孕灾机理、高位远程链灾动力过程和风险防控理论与技术等3方面亟待加强的研究方向。

  • 加载中
  • 图 1  单体滑坡与高位远程地质灾害对比

    Figure 1. 

    图 2  高位远程地质灾害链动特征

    Figure 2. 

    图 3  滑坡碎屑流高速势流与边界层效应示意图

    Figure 3. 

    表 1  不同海拔山区高位远程地质灾害识别InSAR集成方法

    Table 1.  Integrated method of InSAR for identification of high-altitude and long-runout rockslides in mountain areas with different altitudes

    海拔 典型灾害 技术方法 主要技术
    低山(500~ 1000 m) 滑坡、崩塌、塌陷 ① SBAS-InSAR技术(一般情况推荐);
    ② PS-InSAR技术(相干性较好时推荐)
    ①基于数值气象模型的大气延迟改正;
    ②解缠误差探测及改正技术;
    ③坡向形变投影技术
    中山(1000~ 3500 m) 大型滑坡、崩塌等 ① SBAS-InSAR技术(一般情况推荐);
    ② PS-InSAR技术(相干性较好时推荐);
    ③ POT时序技术(大量级形变监测推荐)
    ①基于数值气象模型的大气延迟改正;
    ②解缠误差探测及改正技术;
    ③坡向形变投影技术;
    ④升降轨数据联合监测;
    ⑤叠掩、阴影掩膜技术
    高山(3500~ 5000 m) 高位滑坡、崩塌、冰川 ① SBAS-InSAR技术(时间序列形变监测推荐);
    ② Stacking-InSAR技术(大范围调查推荐);
    ③ POT时序技术(大量级形变监测推荐)
    ①基于数值气象模型的大气延迟改正;
    ②解缠误差探测及改正技术;
    ③坡向形变投影技术;
    ④升降轨数据联合监测;
    ⑤叠掩、阴影掩膜技术;
    ⑥顾及DEM的配准技术
    极高山(>5000 m) 超高位滑坡、崩塌、冰川 ① SBAS-InSAR技术(时间序列形变监测推荐);
    ② Stacking-InSAR技术(大范围调查推荐);
    ③ POT时序技术(大量级形变监测推荐)
    ①基于数值气象模型的大气延迟改正;
    ②解缠误差探测及改正技术;
    ③坡向形变投影技术;
    ④升降轨数据联合监测;
    ⑤叠掩、阴影掩膜技术;
    ⑥顾及DEM的配准技术;
    ⑦可变窗口偏移量跟踪技术;
    ⑧跨平台偏移量跟踪技术
    下载: 导出CSV

    表 2  高位远程地质灾害链动机理与成灾模式简表

    Table 2.  Summary of chain mechanism and disaster mode of high-altitude and long-runout rockslides

    分区 地质特征 动力特征 基本方程
    高位
    启动
    在重力长期蠕变下的不稳定山体、冰雪和冰湖等危险体形成高位滑坡或崩塌,特别是暴雨、地震和融雪等特殊工况会加剧高位成灾体的启动 物源初始启动具有较高的重力势能;在锁固效应和特殊工况作用下,具初始动能 极限平衡
    势动
    转化
    高位剪出后,在陡坡地段具有加速特征;大型崩滑体在气垫圈闭效应作用下,运动距离会增加;逐渐解体成为链状散体结构 重力势能逐渐转化为动能,流滑加速效应明显,形成链条冲击加载;转化过程中可产生空气层压缩效应 能量守恒、
    动量守恒、
    撞击理论等
    动力
    剪切
    崩滑块体通过高势能转化为高速流滑体,撞击、剪切、铲刮沟道斜坡,形成底蚀铲刮体积增大效应;侧向冲刷岸坡坡脚,牵引触发滑坡,形成流体堵溃放大效应 因铲刮冲蚀效应流滑体运动速度降低;受堵溃效应影响流速和流量会出现明显的放大特征;由摩擦块体向流动散体转化 摩擦模型、
    犁切模型等
    液滑/
    流滑
    沟道含水量增加,形成剪切液化效应;流滑体碰撞粉碎化,形成碎屑流体;沟道宽缓,纵坡降较低,形成掩埋堆积成灾区 流滑体滑带形成剪切液化层,剪切阻力减小,导致运动距离增加;或干碎屑流体在剩余驱动力作用下保持远程运动 滑带液化效应、
    颗粒流模型、
    Voellmy模型等
    下载: 导出CSV
  • [1]

    YIN Yueping,LI Bin,GAO Yang,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. doi: 10.1016/j.jrmge.2022.11.001

    [2]

    殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Study on characteristics and disaster reduction of high-speed giant landslide in Bhumi Yigong,Xizang Province[J]. Hydrogeology & Engineering Geology2000,27(4):8 − 11. (in Chinese with English abstract)]

    YIN Yueping. Study on characteristics and disaster reduction of high-speed giant landslide in Bhumi Yigong, Xizang Province[J]. Hydrogeology & Engineering Geology2000, 27(4): 8 − 11. (in Chinese with English abstract)

    [3]

    殷跃平,朱赛楠,李滨,等. 青藏高原高位远程地质灾害[M]. 北京:科学出版社,2021. [YIN Yueping,ZHU Sainan,LI Bin,et al. High-level remote geological disasters in Qinghai-Tibet Plateau[M]. Beijing:Science Press,2021. (in Chinese)]

    YIN Yueping, ZHU Sainan, LI Bin, et al. High-level remote geological disasters in Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2021. (in Chinese)

    [4]

    崔鹏,贾洋,苏凤环,等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊,2017,32(9):985 − 992. [CUI Peng,JIA Yang,SU Fenghuan,et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences,2017,32(9):985 − 992. (in Chinese with English abstract)]

    CUI Peng, JIA Yang, SU Fenghuan, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 2017, 329): 985992. (in Chinese with English abstract)

    [5]

    彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)]

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 3912): 23772389. (in Chinese with English abstract)

    [6]

    ORENSE R,SAPUAY S. Preliminary report on the 17 February 2006 Leyte,Philippines landslide[J]. Soils and Foundations,2006,46(5):685 − 693. doi: 10.3208/sandf.46.685

    [7]

    许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige village on October 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 266): 15341551. (in Chinese with English abstract)

    [8]

    邓建辉,高云建,余志球,等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9 − 16. [DENG Jianhui,GAO Yunjian,YU Zhiqiu,et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River,China[J]. Advanced Engineering Sciences,2019,51(1):9 − 16. (in Chinese with English abstract)]

    DENG Jianhui, GAO Yunjian, YU Zhiqiu, et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 2019, 511): 916. (in Chinese with English abstract)

    [9]

    WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige,Tibet,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):1765 − 1779. doi: 10.1007/s10064-019-01664-2

    [10]

    ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Dynamics and emplacement mechanisms of the successive Baige landslides on the Upper Reaches of the Jinsha River,China[J]. Engineering Geology,2020,278:105819. doi: 10.1016/j.enggeo.2020.105819

    [11]

    ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Initiation mechanism of the Baige landslide on the upper reaches of the Jinsha River,China[J]. Landslides,2020,17(12):2865 − 2877. doi: 10.1007/s10346-020-01495-3

    [12]

    SHUGAR D H,JACQUEMART M,SHEAN D,et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli,Indian Himalaya[J]. Science,2021,373(6552):300 − 306. doi: 10.1126/science.abh4455

    [13]

    殷跃平,李滨,张田田,等. 印度查莫利“2•7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract)]

    YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 323): 18. (in Chinese with English abstract)

    [14]

    ZHANG Tiantian,YIN Yueping,LI Bin,et al. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli,Indian Himalaya[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(2):296 − 308. doi: 10.1016/j.jrmge.2022.04.003

    [15]

    FAN Xuanmei,YUNUS A P,YANG Yinghui,et al. Imminent threat of rock-ice avalanches in High Mountain Asia[J]. Science of the Total Environment,2022,836:155380. doi: 10.1016/j.scitotenv.2022.155380

    [16]

    PINYOL N,ALONSO E. Criteria for rapid sliding II:Thermo-hydro-mechanical and scale effects in Vaiont case[J]. Engineering Geology,2010,114:211 − 227. doi: 10.1016/j.enggeo.2010.04.017

    [17]

    SASSA K,NAGAI O,SOLIDUM R,et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides,2010,7(3):219 − 236. doi: 10.1007/s10346-010-0230-z

    [18]

    HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. doi: 10.1007/s10346-013-0436-y

    [19]

    CROSTA G B,AGLIARDI F,RIVOLTA C,et al. Long-term evolution and early warning strategies for complex rockslides by real-time monitoring[J]. Landslides,2017,14(5):1615 − 1632. doi: 10.1007/s10346-017-0817-8

    [20]

    殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract)]

    YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 445): 827841. (in Chinese with English abstract)

    [21]

    XU Wenjie,ZHOU Qian,DONG Xueyang. SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part II:Reproduction of the Vajont landslide tsunami[J]. Acta Geotechnica,2022,17(6):2121 − 2137. doi: 10.1007/s11440-021-01387-3

    [22]

    GAO Yang,YIN Yueping,LI Bin,et al. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides,2022,19(7):1791 − 1805. doi: 10.1007/s10346-022-01858-y

    [23]

    BUSS E,HEIM Α. Der bergsturz von elm [J]. Zurich,Wurster & Cie,1881:163.

    [24]

    HEIM A. Bergsturz und Menschenleben (Landslides and human lives)[J]. Fretz und Wasmuth,Zurich,1932:218.

    [25]

    MCCONNELL R G,BROCK R W. Report on the great landslide at Frank,Alberta[R]. Ottawa:Department of the Interior,Government of Canada,1904.

    [26]

    CRUDEN D. Major rock slides in the Canadian Rockies[C]//Proceedings of the 27th Canadian Geotechnical Conference. Edmonton,Alta:[s.n.],1974:59 − 66.

    [27]

    CRUDEN D M,VARNES D J. Landslide types and processes[M]//Turner A K,Schuster R L. Landslides. Washington D C:National Academy Press,1996:36 − 75.

    [28]

    CHARRIÈRE M,HUMAIR F,FROESE C,et al. From the source area to the deposit:collapse,fragmentation,and propagation of the Frank Slide[J]. Geological Society of America Bulletin,2015:B31243.1.

    [29]

    CRUDEN D M,HUNGR O. The debris of the Frank Slide and theories of rockslide–avalanche mobility[J]. Canadian Journal of Earth Sciences,1986,23(3):425 − 432. doi: 10.1139/e86-044

    [30]

    MELOSH H J. The mechanics of large rock avalanches[C]//Debris Flows/Avalanches:Process,Recognition,and Mitigation. Boulder:Geological Society of America,1987:41 − 50.

    [31]

    BENKO B,STEAD D. The Frank slide:a reexamination of the failure mechanism[J]. Canadian Geotechnical Journal,1998,35(2):299 − 311. doi: 10.1139/t98-005

    [32]

    LOCAT P,COUTURE R,LEROUEIL S,et al. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal,2006,43(8):830 − 851. doi: 10.1139/t06-045

    [33]

    MÜLLER L. The rock slide in the Vajont Valley[J]. Rock Mechanics & Engineering Geology,1964,2:148 − 212.

    [34]

    MÜLLER-SALZBURG L. The Vajont catastrophe:A personal review[J]. Engineering Geology,1987,24(1/2/3/4):423 − 444.

    [35]

    MÜLLER L. The Vajont slide[J]. Engineering Geology,1987,24(1/2/3/4):527 − 532.

    [36]

    BROILI L. New knowledge on the geomorphology of the Vaiont slide slip surface[J]. Rock Mechanics & Rock Engineering,1967,5:38 − 88.

    [37]

    KILBURN C R J,PETLEY D N. Forecasting giant,catastrophic slope collapse:Lessons from Vajont,Northern Italy[J]. Geomorphology,2003,54(1/2):21 − 32.

    [38]

    BISTACCHI A,MASSIRONI M,SUPERCHI L,et al. A 3D geological model of the 1963 Vajont landslide[J]. Italian Journal of Engineering Geology & Environment,2013(TOPIC 6):531-539.

    [39]

    BOON C W,HOULSBY G T,UTILI S. New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses[J]. Géotechnique,2014,64(10):800 − 816.

    [40]

    HUTCHINSON J N,KOJEAN E. On the rock slide-debris flow of 25 April 1974 in the Quebrada Ccochacay on the Rio Mantaro[R]. UNESCO Mission to the Mantaro Valley,Peru,1975:49.

    [41]

    KOJAN E,HUTCHINSON J N. Mayunmarca rockslide and debris flow,Peru[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:315-353.

    [42]

    EVANS S G,GUTHRIE R H,ROBERTS N J,et al. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island,Philippines:a catastrophic landslide in tropical mountain terrain[J]. Natural Hazards and Earth System Sciences,2007,7(1):89 − 101. doi: 10.5194/nhess-7-89-2007

    [43]

    GUTHRIE R H,EVANS S G,CATANE S G,et al. The 17 February 2006 rock slide-debris avalanche at Guinsaugon Philippines:a synthesis[J]. Bulletin of Engineering Geology and the Environment,2009,68(2):201 − 213. doi: 10.1007/s10064-009-0205-2

    [44]

    LUZON P K,MONTALBO K,GALANG J,et al. Hazard mapping related to structurally controlled landslides in Southern Leyte,Philippines[J]. Natural Hazards and Earth System Sciences,2016,16(3):875 − 883. doi: 10.5194/nhess-16-875-2016

    [45]

    孙玉科,姚宝魁. 盐池河磷矿山体崩坍破坏机制的研究[J]. 水文地质工程地质,1983,10(1):1 − 7. [SUN Yuke,YAO Baokui. Study on the mechanism of mountain collapse in Yanchihe phosphate mine[J]. Hydrogeology & Engineering Geology,1983,10(1):1 − 7. (in Chinese)]

    SUN Yuke, YAO Baokui. Study on the mechanism of mountain collapse in Yanchihe phosphate mine[J]. Hydrogeology & Engineering Geology, 1983, 101): 17. (in Chinese)

    [46]

    孙玉科. 宜昌盐池河磷矿山崩及其崩坍破坏机制[C]//中国典型滑坡. 宜昌,1986:99-108. [SUN Yuke. Collapse and failure mechanism of Yanchihe phosphate mine,Yichang,China[C]//Typical landslides in China. Yichang,1986:99-108. (in Chinese)]

    SUN Yuke. Collapse and failure mechanism of Yanchihe phosphate mine, Yichang, China[C]//Typical landslides in China. Yichang, 1986: 99-108. (in Chinese)

    [47]

    艾南山,王民新. 洒勒山滑坡速度的估算[J]. 水土保持通报,1983,3(3):72 − 74. [AI Nanshan,WANG Minxin. An estimate of velocity of the landslide at sale mountain[J]. Bulletin of Soil and Water Conservation,1983,3(3):72 − 74. (in Chinese with English abstract)]

    AI Nanshan, WANG Minxin. An estimate of velocity of the landslide at sale mountain[J]. Bulletin of Soil and Water Conservation, 1983, 33): 7274. (in Chinese with English abstract)

    [48]

    冯学才,田植甲. 洒勒山滑坡的特征及其预报[J]. 水土保持通报,1983,3(3):75 − 81. [FENG Xuecai,TIAN Zhijia. Characteristics and prediction of Saleshan landslide[J]. Bulletin of Soil and Water Conservation,1983,3(3):75 − 81. (in Chinese)]

    FENG Xuecai, TIAN Zhijia. Characteristics and prediction of Saleshan landslide[J]. Bulletin of Soil and Water Conservation, 1983, 33): 7581. (in Chinese)

    [49]

    苏伯苓. 高速超大型洒勒山滑坡及其研究[C]//中国典型滑坡. 宜昌,1986:43 − 48. [SUBoling. Study on high speed super-large scale Saleshan landslide[C]//Typical landslides in China. Yichang,1986:43 − 48. (in Chinese)]

    SUBoling. Study on high speed super-large scale Saleshan landslide[C]//Typical landslides in China. Yichang, 1986: 43 − 48. (in Chinese)

    [50]

    王士天,詹铮,刘汉超. 洒勒山高速滑坡的基本特征及动力学机制[J]. 地质灾害与环境保护,1990,1(2):66 − 74. [WANG Shitian,ZHAN Zheng,LIU Hanchao. Basic characteristics and dynamic mechanism of Saleshan high-speed landslide[J]. Journal of Geological Hazards and Environment Preservation,1990,1(2):66 − 74. (in Chinese)]

    WANG Shitian, ZHAN Zheng, LIU Hanchao. Basic characteristics and dynamic mechanism of Saleshan high-speed landslide[J]. Journal of Geological Hazards and Environment Preservation, 1990, 12): 6674. (in Chinese)

    [51]

    杨志双,洪勇. 中国洒勒山大型滑坡高速运动成因机制和灾害预测[C]//第五届全国工程地质大会文集. 辉县,1996:126 − 131. [YANG Zhishuang,HONG Yong. Genetic mechanism and disaster prediction of high speed large-scale landslide in Salleshan Mountain,China[C]//Proceedings of the 5th National Engineering Geology Congress. Hui County,1996:126 − 131. (in Chinese)]

    YANG Zhishuang, HONG Yong. Genetic mechanism and disaster prediction of high speed large-scale landslide in Salleshan Mountain, China[C]//Proceedings of the 5th National Engineering Geology Congress. Hui County, 1996: 126 − 131. (in Chinese)

    [52]

    李绍武. 新滩滑坡滑动机制的探讨[J]. 水土保持通报,1985,5(5):15 − 19. [LI Shaowu. Discussion on sliding mechanism of Xintan landslide[J]. Bulletin of Soil and Water Conservation,1985,5(5):15 − 19. (in Chinese)]

    LI Shaowu. Discussion on sliding mechanism of Xintan landslide[J]. Bulletin of Soil and Water Conservation, 1985, 55): 1519. (in Chinese)

    [53]

    陆业海. 新滩滑坡征兆及其成功的监测预报[J]. 水土保持通报,1985,5(5):1 − 9. [LU Yehai. Symptoms of Xintan landslide and its successful monitoring and prediction[J]. Bulletin of Soil and Water Conservation,1985,5(5):1 − 9. (in Chinese)]

    LU Yehai. Symptoms of Xintan landslide and its successful monitoring and prediction[J]. Bulletin of Soil and Water Conservation, 1985, 55): 19. (in Chinese)

    [54]

    刘雄. 新滩大滑坡机制探讨[J]. 岩土力学,1986,7(2):53 − 60. [LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics,1986,7(2):53 − 60. (in Chinese with English abstract)]

    LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics, 1986, 72): 5360. (in Chinese with English abstract)

    [55]

    吕贵芳,任江. 新滩滑坡研究[C]//中国典型滑坡. 宜昌,1986:210 − 220. [LYUGuifang,REN Jiang. Research on Xintan landslide[C]//Typical landslideS in China. Yichang,1986:210 − 220. (in Chinese)]

    LYUGuifang, REN Jiang. Research on Xintan landslide[C]//Typical landslideS in China. Yichang, 1986: 210 − 220. (in Chinese)

    [56]

    黄润秋. 灾害性崩滑地质过程的全过程模拟[J]. 中国地质灾害与防治学报,1994,5(增刊1):11 − 17. [HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control,1994,5(Sup 1):11 − 17. (in Chinese with English abstract)]

    HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(Sup 1): 11 − 17. (in Chinese with English abstract)

    [57]

    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)]

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 263): 433454. (in Chinese with English abstract)

    [58]

    胡广韬. 论斜坡环境中滑坡之剧动与高速的机理[J]. 陕西水力发电,1986,2(3):7 − 18. [HU Guangtao. On the mechanism of landslide violent movement and high speed in slope environment[J]. Power System and Clean Energy,1986,2(3):7 − 18. (in Chinese)]

    HU Guangtao. On the mechanism of landslide violent movement and high speed in slope environment[J]. Power System and Clean Energy, 1986, 23): 718. (in Chinese)

    [59]

    胡广韬. 灾害性滑坡启程剧动与行程高速的机理[J]. 灾害学,1987,2(1):17 − 28. [HU Guangtao. On the mechanisms of initial intense moving and high speed travelling of disastrous landslides[J]. Journal of Catastrophology,1987,2(1):17 − 28. (in Chinese with English abstract)]

    HU Guangtao. On the mechanisms of initial intense moving and high speed travelling of disastrous landslides[J]. Journal of Catastrophology, 1987, 21): 1728. (in Chinese with English abstract)

    [60]

    胡广韬,毛延龙,赵法锁. 论基岩高速滑坡的弹冲动力学机理[J]. 中国地质灾害与防治学报,1992,3(4):21 − 33. [HU Guangtao,MAO Yanlong,ZHAO Fasuo. The elastic impulsive motion dynamics mechanisim of high-speed landslide on bed rock[J]. The Chinese Journal of Geological Hazard and Control,1992,3(4):21 − 33. (in Chinese with English abstract)]

    HU Guangtao, MAO Yanlong, ZHAO Fasuo. The elastic impulsive motion dynamics mechanisim of high-speed landslide on bed rock[J]. The Chinese Journal of Geological Hazard and Control, 1992, 34): 2133. (in Chinese with English abstract)

    [61]

    王士天,张倬元,詹铮,等. 龙羊峡水电站:重大工程地质问题研究[M]. 成都:成都科技大学出版社,1989. [WANG Shitian,ZHANG Zhuoyuan,ZHAN Zheng,et al. Longyangxia Hydropower Station:Research on major engineering geological problems[M]. Chengdu:Chengdu University of Science and Technology Press,1989. (in Chinese)]

    WANG Shitian, ZHANG Zhuoyuan, ZHAN Zheng, et al. Longyangxia Hydropower Station: Research on major engineering geological problems[M]. Chengdu: Chengdu University of Science and Technology Press, 1989. (in Chinese)

    [62]

    胡广韬. 滑坡动力学[M]. 北京:地质出版社,1995. [HU Guangtao. Landslide dynamics[M]. Beijing:Geological Publishing House,1995. (in Chinese)]

    HU Guangtao. Landslide dynamics[M]. Beijing: Geological Publishing House, 1995. (in Chinese)

    [63]

    程谦恭,彭建兵,胡广韬. 高速岩质滑坡动力学[M]. 成都:西南交通大学出版社,1999. [CHENG Qiangong,PENG Jianbing,HU Guangtao. Dynamics of high-speed rock landslide[M]. Chengdu:Southwest Jiaotong University Press,1999. (in Chinese)]

    CHENG Qiangong, PENG Jianbing, HU Guangtao. Dynamics of high-speed rock landslide[M]. Chengdu: Southwest Jiaotong University Press, 1999. (in Chinese)

    [64]

    王家鼎,张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都:四川科学技术出版社,1999. [WANG Jiading,ZHANG Zhuoyuan. Systematic engineering geological study on typical high-speed loess landslide group[M]. Chengdu:Sichuan Scientific & Technical Publishers,1999. (in Chinese)]

    WANG Jiading, ZHANG Zhuoyuan. Systematic engineering geological study on typical high-speed loess landslide group[M]. Chengdu: Sichuan Scientific & Technical Publishers, 1999. (in Chinese)

    [65]

    晏同珍,杨顺安,方云. 滑坡学[M]. 武汉:中国地质大学出版社,2000. [YAN Tongzhen,YANG Shun’an,FANG Yun. Landslidologies[M]. Wuhan:China University of Geosciences Press,2000. (in Chinese)]

    YAN Tongzhen, YANG Shun’an, FANG Yun. Landslidologies[M]. Wuhan: China University of Geosciences Press, 2000. (in Chinese)

    [66]

    王恭先,徐峻龄,刘光代,等. 滑坡学与滑坡防治技术[M]. 北京:中国铁道出版社,2004. [WANG Gongxian,XU Junling,LIU Guangdai,et al. Landslide science and landslide prevention technology[M]. Beijing:China Railway Publishing House,2004. (in Chinese)]

    WANG Gongxian, XU Junling, LIU Guangdai, et al. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004. (in Chinese)

    [67]

    黄润秋,许强. 中国典型灾难性滑坡[M]. 北京:科学出版社,2008. [HUANG Runqiu,XU Qiang. Catastrophic landslides in China[M]. Beijing:Science Press,2008. (in Chinese)]

    HUANG Runqiu, XU Qiang. Catastrophic landslides in China[M]. Beijing: Science Press, 2008. (in Chinese)

    [68]

    许强,裴向军,黄润秋,等. 汶川地震大型滑坡研究[M]. 北京:科学出版社,2009. [XU Qiang,PEI Xiangjun,HUANG Runqiu,et al. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press,2009. (in Chinese)]

    XU Qiang, PEI Xiangjun, HUANG Runqiu, et al. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing: Science Press, 2009. (in Chinese)

    [69]

    崔鹏,何思明,姚令侃. 汶川地震山地灾害形成机理与风险控制[M]. 北京:科学出版社,2011. [CUI Peng,HE Siming,YAO Lingkan. Formation mechanism and risk control of mountain disasters in Wenchuan earthquake[M]. Beijing:Science Press,2011. (in Chinese)]

    CUI Peng, HE Siming, YAO Lingkan. Formation mechanism and risk control of mountain disasters in Wenchuan earthquake[M]. Beijing: Science Press, 2011. (in Chinese)

    [70]

    殷跃平,张永双. 汶川地震工程地质与地质灾害[M]. 北京:科学出版社,2013. [YIN Yueping,ZHANG Yongshuang. Engineering geology and geological disasters of Wenchuan earthquake[M]. Beijing:Science Press,2013. (in Chinese)]

    YIN Yueping, ZHANG Yongshuang. Engineering geology and geological disasters of Wenchuan earthquake[M]. Beijing: Science Press, 2013. (in Chinese)

    [71]

    崔鹏,邹强. 川藏交通廊道山地灾害演化规律与工程风险[M]. 北京:科学出版社,2021. [CUI Peng,ZOU Qiang. Evolution law and engineering risk of mountain disasters in Sichuan-Tibet traffic corridor[M]. Beijing:Science Press,2021. (in Chinese)]

    CUI Peng, ZOU Qiang. Evolution law and engineering risk of mountain disasters in Sichuan-Tibet traffic corridor[M]. Beijing: Science Press, 2021. (in Chinese)

    [72]

    邓建辉,陈菲,赵思远. 白格滑坡致灾调查[M]. 北京:科学出版社,2021. [DENG Jianhui,CHEN Fei,ZHAO Siyuan. Investigation on the disaster caused by Baige landslide[M]. Beijing:Science Press,2021. (in Chinese)]

    DENG Jianhui, CHEN Fei, ZHAO Siyuan. Investigation on the disaster caused by Baige landslide[M]. Beijing: Science Press, 2021. (in Chinese)

    [73]

    VARNES D J. Slope movement types and processes[C]//Schuster R L,Krizek R J. Landslides,analysis and control,special report 176:Transportation research board. Washington,D C:National Academy of Sciences,1978:11 − 33.

    [74]

    YIN Yueping,WANG Fawu,SUN Ping. Landslide hazards triggered by the 2008 Wenchuan earthquake,Sichuan,China[J]. Landslides,2009,6(2):139 − 152. doi: 10.1007/s10346-009-0148-5

    [75]

    YIN Yueping,XING Aiguo. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche,Tibet,China[J]. Bulletin of Engineering Geology and the Environment,2012,71(1):149 − 160. doi: 10.1007/s10064-011-0348-9

    [76]

    WANG Fawu,SUN Ping,HIGHLAND L,et al. Key factors influencing the mechanism of rapid and long runout landslides triggered by the 2008 Wenchuan earthquake,China[J]. Geoenvironmental Disasters,2014,1(1):1 − 16. doi: 10.1186/s40677-014-0001-6

    [77]

    INTRIERI E,RASPINI F,FUMAGALLI A,et al. The Maoxian landslide as seen from space:Detecting precursors of failure with Sentinel-1 data[J]. Landslides,2018,15(1):123 − 133. doi: 10.1007/s10346-017-0915-7

    [78]

    葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 447): 949956. (in Chinese with English abstract)

    [79]

    GAO Yang,LI Bin,GAO Haoyuan,et al. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:A case study of the Shuicheng “7•23”landslide in Guizhou,China[J]. Landslides,2020,17(7):1663 − 1677. doi: 10.1007/s10346-020-01377-8

    [80]

    李振洪,宋闯,余琛,等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版),2019,44(7):967 − 979. [LI Zhenhong,SONG Chuang,YU Chen,et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University,2019,44(7):967 − 979. (in Chinese with English abstract)]

    LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 447): 967979. (in Chinese with English abstract)

    [81]

    YIN Yueping,LIU Xiaojie,ZHAO Chaoying,et al. Multi-dimensional and long-term time series monitoring and early warning of landslide hazard with improved cross-platform SAR offset tracking method[J]. Science China Technological Sciences,2022,65(8):1891 − 1912. doi: 10.1007/s11431-021-2008-6

    [82]

    MASSIRONI M,ZAMPIERI D,SUPERCHI L,et al. Geological structures of the Vajont landslide[J]. Italian Journal of Engineering Geology & Environment,2013(TOPIC 6):573 − 582.

    [83]

    GLASTONBURY J,FELL R. Report on the analysis of “rapid” natural rock slope failures[R]. Sydney:University of New South Wales,2000.

    [84]

    BADGER T C. Fracturing within anticlines and its kinematic control on slope stability[J]. Environmental and Engineering Geoscience,2002,8(1):19 − 33. doi: 10.2113/gseegeosci.8.1.19

    [85]

    BRIDEAU M A,YAN Ming,STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology,2009,103(1):30 − 49. doi: 10.1016/j.geomorph.2008.04.010

    [86]

    AMBROSI C,CROSTA G B. Valley shape influence on deformation mechanisms of rock slopes[J]. Geological Society,London,Special Publications,2011,351(1):215 − 233. doi: 10.1144/SP351.12

    [87]

    HUMAIR F,PEDRAZZINI A,EPARD J L,et al. Structural characterization of Turtle Mountain anticline (Alberta,Canada) and impact on rock slope failure[J]. Tectonophysics,2013,605:133 − 148. doi: 10.1016/j.tecto.2013.04.029

    [88]

    STEAD D,WOLTER A. A critical review of rock slope failure mechanisms:The importance of structural geology[J]. Journal of Structural Geology,2015,74:1 − 23. doi: 10.1016/j.jsg.2015.02.002

    [89]

    彭建兵,马润勇,卢全中,等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing,MA Runyong,LU Quanzhong,et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences,2004,19(3):457 − 466. (in Chinese with English abstract)] doi: 10.3321/j.issn:1001-8166.2004.03.018

    PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences, 2004, 193): 457466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018

    [90]

    许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2010.06.002

    XU Qiang, LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 186): 818826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002

    [91]

    胡新丽,唐辉明,朱丽霞. 汶川震中岩浆岩高边坡破坏模式与崩塌机理[J]. 地球科学,2011,36(6):1149 − 1154. [HU Xinli,TANG Huiming,ZHU Lixia. Collapse mode and mechanism of high magmatite rock slope in Wenchuan epicentral area[J]. Earth Science,2011,36(6):1149 − 1154. (in Chinese with English abstract)]

    HU Xinli, TANG Huiming, ZHU Lixia. Collapse mode and mechanism of high magmatite rock slope in Wenchuan epicentral area[J]. Earth Science, 2011, 366): 11491154. (in Chinese with English abstract)

    [92]

    李滨,王国章,冯振,等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报,2015,34(6):1148 − 1161. [LI Bin,WANG Guozhang,FENG Zhen,et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1148 − 1161. (in Chinese with English abstract)]

    LI Bin, WANG Guozhang, FENG Zhen, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 346): 11481161. (in Chinese with English abstract)

    [93]

    唐辉明,鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报,2018,26(1):129 − 136. [TANG Huiming,LU Sha. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology,2018,26(1):129 − 136. (in Chinese with English abstract)]

    TANG Huiming, LU Sha. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 261): 129136. (in Chinese with English abstract)

    [94]

    兰恒星,仉义星,伍宇明. 岩体结构效应与长远程滑坡动力学[J]. 工程地质学报,2019,27(1):108 − 122. [LAN Hengxing,ZHANG Yixing,WU Yuming. Effect of rock mass structure on the dynamics of longrunout landslide[J]. Journal of Engineering Geology,2019,27(1):108 − 122. (in Chinese with English abstract)]

    LAN Hengxing, ZHANG Yixing, WU Yuming. Effect of rock mass structure on the dynamics of longrunout landslide[J]. Journal of Engineering Geology, 2019, 271): 108122. (in Chinese with English abstract)

    [95]

    XUE Lei,QIN Siqing,PAN Xiaohua,et al. A possible explanation of the stair-step brittle deformation evolutionary pattern of a rockslide[J]. Geomatics,Natural Hazards and Risk,2017,8(2):1456 − 1476. doi: 10.1080/19475705.2017.1345793

    [96]

    CHEN Hongran,QIN Siqing,XUE Lei,et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology,2018,242:34 − 43. doi: 10.1016/j.enggeo.2018.05.012

    [97]

    杨百存,秦四清,薛雷,等. 锁固段损伤过程中的能量转化与分配原理[J]. 东北大学学报(自然科学版),2020,41(7):975 − 981. [YANG Baicun,QIN Siqing,XUE Lei,et al. Energy conversion and allocation principle during the damage process of locked segment[J]. Journal of Northeastern University (Natural Science),2020,41(7):975 − 981. (in Chinese with English abstract)]

    YANG Baicun, QIN Siqing, XUE Lei, et al. Energy conversion and allocation principle during the damage process of locked segment[J]. Journal of Northeastern University (Natural Science), 2020, 417): 975981. (in Chinese with English abstract)

    [98]

    殷跃平,朱继良,杨胜元. 贵州关岭大寨高速远程滑坡-碎屑流研究[J]. 工程地质学报,2010,18(4):445 − 454. [YIN Yueping,ZHU Jiliang,YANG Shengyuan. Investigation of a high speed and long Run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology,2010,18(4):445 − 454. (in Chinese with English abstract)]

    YIN Yueping, ZHU Jiliang, YANG Shengyuan. Investigation of a high speed and long Run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 2010, 184): 445454. (in Chinese with English abstract)

    [99]

    殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217 − 226. [YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide:A case study of Jiweishan rockslide in Wulong,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217 − 226. (in Chinese with English abstract)]

    YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 292): 217226. (in Chinese with English abstract)

    [100]

    殷跃平,王猛,李滨,等. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报,2012,31(10):1969 − 1982. [YIN Yueping,WANG Meng,LI Bin,et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1969 − 1982. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2012.10.003

    YIN Yueping, WANG Meng, LI Bin, et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 3110): 19691982. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.10.003

    [101]

    黄波林,殷跃平,李滨,等. 库区城镇滑坡涌浪风险评价与减灾研究[J]. 地质学报,2021,95(6):1949 − 1961. [HUANG Bolin,YIN Yueping,LI Bin,et al. Study of risk assessment and mitigation for landslide-induced impulse wave near towns in reservoir areas[J]. Acta Geologica Sinica,2021,95(6):1949 − 1961. (in Chinese with English abstract)]

    HUANG Bolin, YIN Yueping, LI Bin, et al. Study of risk assessment and mitigation for landslide-induced impulse wave near towns in reservoir areas[J]. Acta Geologica Sinica, 2021, 956): 19491961. (in Chinese with English abstract)

    [102]

    黄波林,殷跃平. 水库区滑坡涌浪风险评估技术研究[J]. 岩石力学与工程学报,2018,37(3):621 − 629. [HUANG Bolin,YIN Yueping. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):621 − 629. (in Chinese with English abstract)]

    HUANG Bolin, YIN Yueping. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 373): 621629. (in Chinese with English abstract)

    [103]

    李滨,殷跃平,高杨,等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5 − 13. [LI Bin,YIN Yueping,GAO Yang,et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5 − 13. (in Chinese with English abstract)]

    LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology, 2020, 474): 513. (in Chinese with English abstract)

    [104]

    朱赛楠,殷跃平,王猛,等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan,YIN Yueping,WANG Meng,et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:Case study of Sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)]

    ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering, 2021, 434): 688697. (in Chinese with English abstract)

    [105]

    HSÜ K J. Albert heim:Observations on landslides and relevance to modern interpretations[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:71 − 93.

    [106]

    DAVIES T R,MCSAVENEY M J,HODGSON K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal,1999,36(6):1096 − 1110. doi: 10.1139/t99-067

    [107]

    RUBEY W W,KING HUBBERT M. Role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin,1959,70(2):167. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2

    [108]

    KENT P E. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology,1966,74(1):79 − 83. doi: 10.1086/627142

    [109]

    SHREVE R L. The blackhawk landslide[M]//Geological Society of America Special Papers. Boulder:Geological Society of America,1968:1 − 48.

    [110]

    SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(3):65.

    [111]

    HSÜ K J. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Boulder:Geological Society of America Bulletin,1975,86(1):129. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    [112]

    HOWARD K A. Avalanche mode of motion:Implications from Lunar examples[J]. Science,1973,180:1052 − 1055. doi: 10.1126/science.180.4090.1052

    [113]

    IVERSON R M. Mechanics of debris flows and rock avalanches[M]. Boca Raton:CRC Press,2012b.

    [114]

    HUNGR O. Dynamics of rock avalanches and other types of mass movements[D]. Edmonton:University of Alberta,1981.

    [115]

    HUNGR O. Mobility of rock avalanches[R]. Tsukuba:National Research Institute for Earth Science and Disaster Prevention,1990:11-20.

    [116]

    HUNGR O. A model for the runout analysis of rapid flow slides,debris flows,and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. doi: 10.1139/t95-063

    [117]

    HUNGR O,MORGENSTERN N R. Experiments in high velocity open channel flow of granular materials[J]. Geotechnique,1984,34(3):405 − 413. doi: 10.1680/geot.1984.34.3.405

    [118]

    HUNGR O,EVANS S G. Rock avalanche runout prediction using a dynamic model[C]//Proceedings of the 7th International Symposium on Landslides. Trondheim,Norway:[s.n.],1996:21.

    [119]

    HUNGR O,EVANS S G. A dynamic model for landslides with changing mass[C]//Proceedings of IAEG on Engineering Geology and the Environment. Athens,Greece:[s.n.],1997:719,724.

    [120]

    HUNGR O,EVANS S G,HAZZARD J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia[J]. Canadian Geotechnical Journal,1999,36(2):224 − 238. doi: 10.1139/t98-106

    [121]

    HUNGR O,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental and Engineering Geoscience,2001,7(3):221 − 238. doi: 10.2113/gseegeosci.7.3.221

    [122]

    HUNGR O. Rock avalanche occurrence,process and modelling[C]//Landslides from Massive Rock Slope Failure. Dordrecht:Springer,2006:243-266.

    [123]

    XING Aiguo,WANG Gonghui,YIN Yueping,et al. Investigation and dynamic analysis of a catastrophic rock avalanche on September 23,1991,Zhaotong,China[J]. Landslides,2016,13(5):1035 − 1047. doi: 10.1007/s10346-015-0617-y

    [124]

    GAO Yang,YIN Yueping,LI Bin,et al. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun,Dujiangyan,China,following the Wenchuan Ms 8.0 earthquake[J]. Landslides,2017,14(4):1361 − 1374. doi: 10.1007/s10346-016-0793-4

    [125]

    YIN Yueping,XING Aiguo,WANG Gonghui,et al. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong,Yunnan,southwestern China[J]. Landslides,2017,14(2):649 − 659. doi: 10.1007/s10346-016-0729-z

    [126]

    IVERSON R M. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research:Earth Surface,2012,117(F3):F03006.

    [127]

    IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics,1997,35(3):245 − 296. doi: 10.1029/97RG00426

    [128]

    IVERSON R M,OUYANG Chaojun. Entrainment of bed material by earth-surface mass flows:Review and reformulation of depth-integrated theory[J]. Reviews of Geophysics,2015,53(1):27 − 58. doi: 10.1002/2013RG000447

    [129]

    IVERSON R M,REID M E,LOGAN M,et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience,2011,4(2):116 − 121. doi: 10.1038/ngeo1040

    [130]

    IVERSON R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology,2015,244:9 − 20. doi: 10.1016/j.geomorph.2015.02.033

    [131]

    SAVAGE S B,IVERSON R M. Surge dynamics coupled to pore-pressure evolution in debris flows[C]//RICKENMANN D,CHEN C. International conference on debris-flow hazards mitigation:Mechanics,prediction,and assessment,proceedings. Rotterdam:Millpress,2003:503-514.

    [132]

    PITMAN E B,LE Long. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,363(1832):1573-1601.

    [133]

    TAKAHASHI T. Debris flow:mechanics,prediction and countermeasures[M]. London:Taylor & Francis,2007.

    [134]

    唐春安,赵文. 岩石破裂全过程分析软件系统RFPA2D[J]. 岩石力学与工程学报,1997,16(5):507 − 508. [TANG Chun’an,ZHAO Wen. Software system RFPA2D for analyzing the whole process of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering,1997,16(5):507 − 508. (in Chinese)] doi: 10.3321/j.issn:1000-6915.1997.05.018

    TANG Chun’an, ZHAO Wen. Software system RFPA2D for analyzing the whole process of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 165): 507508. (in Chinese) doi: 10.3321/j.issn:1000-6915.1997.05.018

    [135]

    李世海,高波,燕琳. 三峡永久船闸高边坡开挖三维离散元数值模拟[J]. 岩土力学,2002,23(3):272 − 277. [LI Shihai,GAO Bo,YAN Lin. 3-D simulation of the excavation of high steep slope of Three-Gorges permanent lock by distinct element method[J]. Rock and Soil Mechanics,2002,23(3):272 − 277. (in Chinese with English abstract)]

    LI Shihai, GAO Bo, YAN Lin. 3-D simulation of the excavation of high steep slope of Three-Gorges permanent lock by distinct element method[J]. Rock and Soil Mechanics, 2002, 233): 272277. (in Chinese with English abstract)

    [136]

    刘春,张晓宇,许强,等. 三维离散元模型的滑坡能量守恒模拟研究[J]. 地下空间与工程学报,2017,13(增刊2):698 − 704. [LIU Chun,ZHANG Xiaoyu,XU Qiang,et al. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering,2017,13(Sup 2):698 − 704. (in Chinese with English abstract)]

    LIU Chun, ZHANG Xiaoyu, XU Qiang, et al. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Sup 2): 698 − 704. (in Chinese with English abstract)

    [137]

    徐文杰,王忠静. 一个共享的软件服务系统——水利云计算平台[J]. 长江科学院院报,2021,38(9):141 − 148. [XU Wenjie,WANG Zhongjing. A shared software service system:Hydraulic cloud computing platform[J]. Journal of Yangtze River Scientific Research Institute,2021,38(9):141 − 148. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20200674

    XU Wenjie, WANG Zhongjing. A shared software service system: Hydraulic cloud computing platform[J]. Journal of Yangtze River Scientific Research Institute, 2021, 389): 141148. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200674

    [138]

    SHREVE R L. Sherman landslide,Alaska[J]. Science,1966,154(3757):1639 − 1643. doi: 10.1126/science.154.3757.1639

    [139]

    邢爱国,殷跃平,齐超,等. 高速远程滑坡气垫效应的风洞模拟试验研究[J]. 上海交通大学学报,2012,46(10):1642 − 1646. [XING Aiguo,YIN Yueping,QI Chao,et al. Study on the wind tunnel testing of air cushion effect of high-speed and long-runout landslide[J]. Journal of Shanghai Jiao Tong University,2012,46(10):1642 − 1646. (in Chinese with English abstract)]

    XING Aiguo, YIN Yueping, QI Chao, et al. Study on the wind tunnel testing of air cushion effect of high-speed and long-runout landslide[J]. Journal of Shanghai Jiao Tong University, 2012, 4610): 16421646. (in Chinese with English abstract)

    [140]

    GOGUEL J. Scale-dependent rockslide mechanisms,with emphasis on the role of pore fluid vaporization[M]//Developments in Geotechnical Engineering. Amsterdam:Elsevier,1978:693-705.

    [141]

    ERISMANN T H. Mechanisms of large landslides[J]. Rock Mechanics,1979,12(1):15 − 46. doi: 10.1007/BF01241087

    [142]

    HABIB P. Production of gaseous pore pressure during rock slides[J]. Rock Mechanics,1975,7(4):193 − 197. doi: 10.1007/BF01246865

    [143]

    GOGUEL J, PACHOUD A. Geology and dynamics of the rockfall of the granier range which occurred in November 1248. Bulletin, Bureau de Récherches Geologiques et Miniéres, Hydrogeologie, Lyon, 1972(1):29 − 38.

    [144]

    PINYOL N M, ALVARADO M, ALONSO E E, et al. Thermal effects in landslide mobility[J]. Géotechnique,2018,68(6):528 − 545.

    [145]

    ALONSO E E. Triggering and motion of landslides[J]. Géotechnique,2021,71(1):3 − 59.

    [146]

    TAMBURI A J. Creep of single rocks on bedrock[J]. Geological Society of America Bulletin,1974,85(3):351. doi: 10.1130/0016-7606(1974)85<351:COSROB>2.0.CO;2

    [147]

    WANG Yufeng,DONG Jiajuan,CHENG Qianggong. Velocity-dependent frictional weakening of large rock avalanche basal facies:implications for rock avalanche hypermobility?[J]. Journal of Geophysical Research:Solid Earth,2017,122(3):1648 − 1676. doi: 10.1002/2016JB013624

    [148]

    HU Wei,HUANG Runqiu,MCSAVENEY M,et al. Mineral changes quantify frictional heating during a large low-friction landslide[J]. Geology,2018,46(3):223 − 226. doi: 10.1130/G39662.1

    [149]

    HU Wei,HUANG Runqiu,MCSAVENEY M,et al. Superheated steam,hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:field and experimental evidence[J]. Earth and Planetary Science Letters,2019,510:85 − 93. doi: 10.1016/j.jpgl.2019.01.005

    [150]

    HE Siming,LIU Wei,WANG Juan. Dynamic simulation of landslide based on thermo-poro-elastic approach[J]. Computers & Geosciences,2015,75:24 − 32.

    [151]

    HUTCHINSON J N,BHANDARI R K. Untrained loading,a fundamental-mechanism of mud slide and other mass movements[J]. Geotechnique,1971,21(4):353 − 358. doi: 10.1680/geot.1971.21.4.353

    [152]

    SEED H B. The fourth Terzaghi lecture:landslides during earthquakes due to liquefaction[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(5):1053 − 1122. doi: 10.1061/JSFEAQ.0001182

    [153]

    SASSA K,FUKUOKA H,WANG Gonghui,et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides,2004,1(1):7 − 19. doi: 10.1007/s10346-003-0004-y

    [154]

    SASSA K. Development of a new cyclic loading ring-shear apparatus to study earthquake-induced landslides[R]. Tokyo:Ministry of Education,Science and Culture,Japan,1994:106.

    [155]

    SASSA K. Special lecture:Geotechnical model for the motion of landslides:Proc 5th International Symposium on Landslides,Lausanne,10–15 July 1988V1,P37–55. Publ Rotterdam:a Balkema,1988[J]. International Journal of Rock Mechanics and Mining Sciences \& Geomechanics Abstracts,1989,26:88.

    [156]

    SASSA K. The mechanism starting liquefied landslides and debris flows[C]//Proceedings of the 4th International Symposium on Landslides. Toronto:[s.n.],1984:349-354.

    [157]

    WANG Fawu,WAFID A N M,ZHANG Fanyu,et al. Tandikek and Malalak rapid and long runout landslides triggered by West Sumatra earthquake 2009 ( M7.6) in Indonesia[J]. Journal of the Japan Landslide Society,2011,48(4):215 − 220. doi: 10.3313/jls.48.215

    [158]

    WANG Gonghui,JIANG Yao,CHANG Chengrui,et al. Volcaniclastic debris avalanche on Motomachi area of Izu-Oshima,Japan,triggered by severe storm:Phenomenon and mechanisms[J]. Engineering Geology,2019,251:24 − 36. doi: 10.1016/j.enggeo.2019.02.003

    [159]

    XING Aiguo,WANG Gonghui,LI Bin,et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling,Guizhou,China[J]. Canadian Geotechnical Journal,2015,52(7):971 − 981. doi: 10.1139/cgj-2014-0122

    [160]

    YIN Yueping,LI Bin,WANG Wenpei,et al. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering,2016,2(2):230 − 249. doi: 10.1016/J.ENG.2016.02.005

    [161]

    TAKAHASHI T. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division,1978,104(8):1153 − 1169. doi: 10.1061/JYCEAJ.0005046

    [162]

    EGASHIRA S,HONDA N,ITOH T. Experimental study on the entrainment of bed material into debris flow[J]. Physics and Chemistry of the Earth,Part C:Solar,Terrestrial & Planetary Science,2001,26(9):645-650.

    [163]

    BOUCHUT F,FERNÁNDEZ-NIETO E D,MANGENEY A,et al. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica,2008,199(1):181 − 208.

    [164]

    MANGENEY A. Landslide boost from entrainment[J]. Nature Geoscience,2011,4(2):77 − 78. doi: 10.1038/ngeo1077

    [165]

    殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [YIN Yueping,WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese with English abstract)]

    YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 398): 15131521. (in Chinese with English abstract)

    [166]

    高杨,高浩源,李滨,等. 滑坡冲击铲刮变量的计算方法研究[J]. 计算力学学报,2022,39(1):105 − 112. [GAO Yang,GAO Haoyuan,LI Bin,et al. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics,2022,39(1):105 − 112. (in Chinese with English abstract)] doi: 10.7511/jslx20201022001

    GAO Yang, GAO Haoyuan, LI Bin, et al. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics, 2022, 391): 105112. (in Chinese with English abstract) doi: 10.7511/jslx20201022001

    [167]

    高杨,李滨,高浩源,等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang,LI Bin,GAO Haoyuan,et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract)]

    GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics, 2020, 264): 510519. (in Chinese with English abstract)

    [168]

    WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Dynamic analysis of a long-runout,flow-like landslide at Areletuobie,Yili River valley,northwestern China[J]. Bulletin of Engineering Geology and the Environment,2019,78(5):3143 − 3157. doi: 10.1007/s10064-018-1322-6

    [169]

    陆鹏源,侯天兴,杨兴国,等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报,2016,35(6):1225 − 1232. [LU Pengyuan,HOU Tianxing,YANG Xingguo,et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(6):1225 − 1232. (in Chinese with English abstract)]

    LU Pengyuan, HOU Tianxing, YANG Xingguo, et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 356): 12251232. (in Chinese with English abstract)

    [170]

    VOELLMY A. Uber die Zerstorungskraft von Lawinen (On the destructive power of avalanche)[J]. Schweizerische Bauzeitung,1955,73:212 − 285.

    [171]

    MAHBOOB M A, IQBAL J, ATIF I. Modeling and simulation of glacier avalanche:A case study of gayari sector glaciers hazards assessment[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(11):5824 − 5834.

    [172]

    HUNGR O,MORGENSTERN N R. Discussion:Experiments on the flow behavior of granular materials at high velocity in an open channel[J]. Géotechnique,1985,35(3):383 − 385.

    [173]

    DAVIES T R,MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal,1999,36(2):313 − 320. doi: 10.1139/t98-108

    [174]

    崔鹏,邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展,2016,35(2):137 − 147. [CUI Peng,ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography,2016,35(2):137 − 147. (in Chinese with English abstract)] doi: 10.18306/dlkxjz.2016.02.001

    CUI Peng, ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography, 2016, 352): 137147. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2016.02.001

    [175]

    FAN Xuanmei,DUFRESNE A,SIVA SUBRAMANIAN S,et al. The formation and impact of landslide dams:State of the art[J]. Earth-Science Reviews,2020,203:103116. doi: 10.1016/j.earscirev.2020.103116

    [176]

    孙萍,汪发武,殷跃平,等. 汶川地震高速远程滑坡机制实验研究[J]. 地震地质,2010,32(1):98 − 106. [SUN Ping,WANG Fawu,YIN Yueping,et al. An experimental study on the mechanism of rapid and long Run-out landslide triggered by Wenchuan earthquake[J]. Seismology and Geology,2010,32(1):98 − 106. (in Chinese with English abstract)]

    SUN Ping, WANG Fawu, YIN Yueping, et al. An experimental study on the mechanism of rapid and long Run-out landslide triggered by Wenchuan earthquake[J]. Seismology and Geology, 2010, 321): 98106. (in Chinese with English abstract)

    [177]

    DAI Fuchu,TU Xinbin,XU Chong,et al. Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake,China[J]. Geomorphology,2011,132(3/4):300 − 318.

    [178]

    王玉峰,程谦恭,朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报,2012,31(6):1089 − 1106. [WANG Yufeng,CHENG Qiangong,ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1089 − 1106. (in Chinese with English abstract)]

    WANG Yufeng, CHENG Qiangong, ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 316): 10891106. (in Chinese with English abstract)

    [179]

    胡卸文,顾成壮,牛彦博,等. 芦山地震触发大岩崩滑坡-碎屑流特征与运动过程[J]. 西南交通大学学报,2013,48(4):590 − 598. [HU Xiewen,GU Chengzhuang,NIU Yanbo,et al. Debris flow characteristics and movement process of dayanbeng landslide in Tianquan County triggered by “4•20” Lushan earthquake[J]. Journal of Southwest Jiaotong University,2013,48(4):590 − 598. (in Chinese with English abstract)]

    HU Xiewen, GU Chengzhuang, NIU Yanbo, et al. Debris flow characteristics and movement process of dayanbeng landslide in Tianquan County triggered by “4•20” Lushan earthquake[J]. Journal of Southwest Jiaotong University, 2013, 484): 590598. (in Chinese with English abstract)

    [180]

    孟兴民,陈冠,郭鹏,等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质,2013,33(4):1 − 15. [MENG Xingmin,CHEN Guan,GUO Peng,et al. Research of landslides and debris flows in Bailong river basin:Progress and prospect[J]. Marine Geology & Quaternary Geology,2013,33(4):1 − 15. (in Chinese with English abstract)]

    MENG Xingmin, CHEN Guan, GUO Peng, et al. Research of landslides and debris flows in Bailong river basin: Progress and prospect[J]. Marine Geology & Quaternary Geology, 2013, 334): 115. (in Chinese with English abstract)

    [181]

    刘传正. 论崩塌滑坡-碎屑流高速远程问题[J]. 地质论评,2017,63(6):1563 − 1575. [LIU Chuanzheng. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review,2017,63(6):1563 − 1575. (in Chinese with English abstract)]

    LIU Chuanzheng. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review, 2017, 636): 15631575. (in Chinese with English abstract)

    [182]

    XING Aiguo,YUAN Xiaoyi,XU Qiang,et al. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley,Mianzhu,Sichuan,China[J]. Landslides,2017,14(1):83 − 98. doi: 10.1007/s10346-016-0707-5

    [183]

    ZHANG Ming,MCSAVENEY M J. Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophysical Research Letters,2017,44(17):8814 − 8821. doi: 10.1002/2017GL073774

    [184]

    CHEN Xiaoqing,HU Kai,CHEN Jiangang,et al. Laboratory investigation of the effect of initial dry density and grain size distribution on soil-water characteristic curves of wide-grading gravelly soil[J]. Geotechnical and Geological Engineering,2018,36(2):885 − 896.

    [185]

    裴向军,崔圣华,黄润秋. 大光包滑坡启动机制:强震过程滑带动力扩容与水击效应[J]. 岩石力学与工程学报,2018,37(2):430 − 448. [PEI Xiangjun,CUI Shenghua,HUANG Runqiu. A model of initiation of Daguangbao landslide:Dynamic dilation and water hammer in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(2):430 − 448. (in Chinese with English abstract)]

    PEI Xiangjun, CUI Shenghua, HUANG Runqiu. A model of initiation of Daguangbao landslide: Dynamic dilation and water hammer in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 372): 430448. (in Chinese with English abstract)

    [186]

    许冲,徐锡伟,周本刚,等. 同震滑坡发生概率研究——新一代地震滑坡危险性模型[J]. 工程地质学报,2019,27(5):1122 − 1130. [XU Chong,XU Xiwei,ZHOU Bengang,et al. Probability of coseismic landslides:A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology,2019,27(5):1122 − 1130. (in Chinese with English abstract)]

    XU Chong, XU Xiwei, ZHOU Bengang, et al. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 2019, 275): 11221130. (in Chinese with English abstract)

    [187]

    GUO Changbao,MONTGOMERY D R,ZHANG Yongshuang,et al. Evidence for repeated failure of the giant Yigong landslide on the edge of the Tibetan Plateau[J]. Scientific Reports,2020,10:14371. doi: 10.1038/s41598-020-71335-w

    [188]

    文宝萍,曾启强,闫天玺,等. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探[J]. 工程科学与技术,2020,52(5):38 − 49. [WEN Baoping,ZENG Qiqiang,YAN Tianxi,et al. Preliminary study on geomechanical model of large-scale rock mass in southeast Qinghai-Tibet Plateau starting from high-speed long-distance collapse and slip[J]. Advanced Engineering Sciences,2020,52(5):38 − 49. (in Chinese with English abstract)]

    WEN Baoping, ZENG Qiqiang, YAN Tianxi, et al. Preliminary study on geomechanical model of large-scale rock mass in southeast Qinghai-Tibet Plateau starting from high-speed long-distance collapse and slip[J]. Advanced Engineering Sciences, 2020, 525): 3849. (in Chinese with English abstract)

    [189]

    罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract)]

    LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 473): 913934. (in Chinese with English abstract)

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1707
  • PDF下载数:  116
  • 施引文献:  0
出版历程
收稿日期:  2023-09-24
修回日期:  2023-10-06
录用日期:  2023-10-10
刊出日期:  2024-02-25

目录