中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于动态串联PSO-BiLSTM的滑坡变形速率预测方法研究

唐宇峰, 何俚秋, 曹睿. 基于动态串联PSO-BiLSTM的滑坡变形速率预测方法研究[J]. 中国地质灾害与防治学报, 2025, 36(3): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.202311014
引用本文: 唐宇峰, 何俚秋, 曹睿. 基于动态串联PSO-BiLSTM的滑坡变形速率预测方法研究[J]. 中国地质灾害与防治学报, 2025, 36(3): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.202311014
TANG Yufeng, HE Liqiu, CAO Rui. Research on landslide deformation rate prediction method based on dynamic serial PSO-BiLSTM[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.202311014
Citation: TANG Yufeng, HE Liqiu, CAO Rui. Research on landslide deformation rate prediction method based on dynamic serial PSO-BiLSTM[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.202311014

基于动态串联PSO-BiLSTM的滑坡变形速率预测方法研究

  • 基金项目: 四川省科技厅科技支撑项目(2022NSFSC1154);企业信息化与物联网测控技术四川省高校重点实验室开放基金项目(2023WYJ04);四川轻化工大学科研创新团队计划项目(SUSE652A004)
详细信息
    作者简介: 唐宇峰(1986—),男,四川宜宾人,博士,副教授,研究方向为深度学习在故障诊断、地灾预测领域内的理论及应用。E-mail:386426034@qq.com
  • 中图分类号: P642.22

Research on landslide deformation rate prediction method based on dynamic serial PSO-BiLSTM

  • 针对现有突发型滑坡变形速率预测方法存在诸如精度不足、计算效率低等问题,提出一种基于动态串联PSO-BiLSTM的滑坡变形速率预测方法。首先,采用动态滑窗方式截取滑坡变形速率,并通过集合经验模态分解(EEMD)对截取的变形速率序列进行分解,得到趋势项及周期项;其次,分别通过多项式拟合和周期项PSO-BiLSTM网络得到趋势项和周期项的变形速率预测序列;再次,经过一系列循环得到残差变形速率序列后,结合趋势项及周期项变形速率预测序列,建立总PSO-BiLSTM预测网络,得到总预测变形速率;最后,以四川省某滑坡监测为例对方法进行了验证。结果表明:基于动态串联PSO-BiLSTM算法的MAEMAPERMSER2分别为0.28、5.41%、0.57、0.98,计算时间为380.22 s,在具有较高的精度的同时保证了计算效率。

  • 加载中
  • 图 1  LSTM基本工作原理

    Figure 1. 

    图 2  LSTM与BiLSTM对比

    Figure 2. 

    图 3  PSO-BiLSTM训练流程

    Figure 3. 

    图 4  岩土体蠕变曲线簇

    Figure 4. 

    图 5  动态串联PSO-BiLSTM算法预测流程

    Figure 5. 

    图 6  滑坡隐患点监测预警设备

    Figure 6. 

    图 7  突变前500 h滑坡变形速率

    Figure 7. 

    图 8  实测及预处理后的数据

    Figure 8. 

    图 9  20 h变形速率预测结果对比

    Figure 9. 

    图 10  10 h变形速率预测结果对比

    Figure 10. 

    表 1  预测结果评价

    Table 1.  Evaluation of prediction results

    预测
    类型
    位移评价指标计算时间/s
    MAEMAPE/%RMSER2
    类型Ⅰ0.438.450.700.9624.89
    类型Ⅱ0.367.070.610.97294.50
    类型Ⅲ0.305.820.510.981861.87
    类型Ⅳ0.285.410.570.98380.22
    下载: 导出CSV
  • [1]

    国家统计局. 中国统计年鉴2024[J]. 北京:中国统计出版社,2024. National Bureau of Statistics. China Statistical Yearbook 2024 [J]. Beijing:China Statistical Publishing House,2024.

    [2]

    许强,彭大雷,何朝阳,等. 突发型黄土滑坡监测预警理论方法研究——以甘肃黑方台为例[J]. 工程地质学报,2020,28(1):111 − 121. [XU Qiang,PENG Dalei,HE Chaoyang,et al. Theory and method of monitoring and early warning for sudden loess landslide:A case study at Heifangtai terrace[J]. Journal of Engineering Geology,2020,28(1):111 − 121. (in Chinese with English abstract)]

    XU Qiang, PENG Dalei, HE Chaoyang, et al. Theory and method of monitoring and early warning for sudden loess landslide: A case study at Heifangtai terrace[J]. Journal of Engineering Geology, 2020, 28(1): 111 − 121. (in Chinese with English abstract)

    [3]

    陈文涛,杨志全,朱颖彦,等. 阿塔巴德滑坡形成条件与诱发机制分析[J]. 中国安全科学学报,2020,30(11):148 − 155. [CHEN Wentao,YANG Zhiquan,ZHU Yingyan,et al. Analyses on formation conditions and triggering mechanism of Atabad landslide[J]. China Safety Science Journal,2020,30(11):148 − 155. (in Chinese with English abstract)]

    CHEN Wentao, YANG Zhiquan, ZHU Yingyan, et al. Analyses on formation conditions and triggering mechanism of Atabad landslide[J]. China Safety Science Journal, 2020, 30(11): 148 − 155. (in Chinese with English abstract)

    [4]

    董力豪,刘艳辉,黄俊宝,等. 基于卷积神经网络的福建省区域滑坡灾害预警模型[J]. 水文地质工程地质,2024,51(1):145 − 153. [DONG Lihao,LIU Yanhui,HUANG Junbao,et al. An early preiction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology,2024,51(1):145 − 153. (in Chinese with English abstract)]

    DONG Lihao, LIU Yanhui, HUANG Junbao, et al. An early preiction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 145 − 153. (in Chinese with English abstract)

    [5]

    杨伟东,王再旺,赵涵卓,等. 基于APSO-SVR-GRU模型的白水河滑坡周期项位移预测[J]. 中国地质灾害与防治学报,2022,33(6):20 − 28. [YANG Weidong,WANG Zaiwang,ZHAO Hanzhuo,et al. Displacement prediction of periodic term of Baishuihe landslide based on APSO-SVR-GRU model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):20 − 28. (in Chinese with English abstract)]

    YANG Weidong, WANG Zaiwang, ZHAO Hanzhuo, et al. Displacement prediction of periodic term of Baishuihe landslide based on APSO-SVR-GRU model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 20 − 28. (in Chinese with English abstract)

    [6]

    刘莹,杨超宇. 基于多因素的LSTM瓦斯浓度预测模型[J]. 中国安全生产科学技术,2022,18(1):108 − 113. [LIU Ying,YANG Chaoyu. LSTM gas concentration prediction model based on multiple factors[J]. Journal of Safety Science and Technology,2022,18(1):108 − 113. (in Chinese with English abstract)]

    LIU Ying, YANG Chaoyu. LSTM gas concentration prediction model based on multiple factors[J]. Journal of Safety Science and Technology, 2022, 18(1): 108 − 113. (in Chinese with English abstract)

    [7]

    陶雪杰,徐金明,王树成,等. 使用长短期记忆人工神经网络进行花岗岩变形破坏阶段的判别[J]. 水文地质工程地质,2021,48(3):126 − 134. [TAO Xuejie,XU Jinming,WANG Shucheng,et al. Determination of granite deformation and failure stages using the long short term memory neural network[J]. Hydrogeology & Engineering Geology,2021,48(3):126 − 134. (in Chinese with English abstract)]

    TAO Xuejie, XU Jinming, WANG Shucheng, et al. Determination of granite deformation and failure stages using the long short term memory neural network[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 126 − 134. (in Chinese with English abstract)

    [8]

    李丽敏,郭伏,温宗周,等. 基于长短时记忆与多影响因子的滑坡位移动态预测[J]. 科学技术与工程,2020,20(33):13559 − 13567. [LI Limin,GUO Fu,WEN Zongzhou,et al. Dynamic prediction of landslide displacement based on long short time memory and multiple influencing factors[J]. Science Technology and Engineering,2020,20(33):13559 − 13567. (in Chinese with English abstract)]

    LI Limin, GUO Fu, WEN Zongzhou, et al. Dynamic prediction of landslide displacement based on long short time memory and multiple influencing factors[J]. Science Technology and Engineering, 2020, 20(33): 13559 − 13567. (in Chinese with English abstract)

    [9]

    张明岳,李丽敏,温宗周. RNN与LSTM 方法用于滑坡位移动态预测的研究[J]. 人民珠江,2021,42(9):6 − 13. [ZHANG Mingyue,LI Limin,WEN Zongzhou. Research on RNN and LSTM method for dynamic prediction of landslide displacement[J]. Pearl River,2021,42(9):6 − 13. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2021.09.002

    ZHANG Mingyue, LI Limin, WEN Zongzhou. Research on RNN and LSTM method for dynamic prediction of landslide displacement[J]. Pearl River, 2021, 42(9): 6 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2021.09.002

    [10]

    LI Jiaying, WANG Weidong, HAN Zheng. A variable weight combination model for prediction on landslide displacement using AR model, LSTM model, and SVM model: A case study of the Xinming landslide in China[J]. Environmental Earth Sciences, 2021, 80(10): 386.

    [11]

    唐宇峰,胡光忠,周帅. 动态残差修正 LSTM 算法的突发型滑坡位移预测[J]. 中国安全科学学报,2023,33(8):109 − 116. [TANG Yufeng,HU Guangzhong,ZHOU Shuai. Displacement prediction of sudden landslide based on dynamic residual correction LSTM algorithm[J]. China Safety Science Journal,2023,33(8):109 − 116. (in Chinese with English abstract)]

    TANG Yufeng, HU Guangzhong, ZHOU Shuai. Displacement prediction of sudden landslide based on dynamic residual correction LSTM algorithm[J]. China Safety Science Journal, 2023, 33(8): 109 − 116. (in Chinese with English abstract)

    [12]

    TENGTRAIRAT N,WOO W L,PARATHAI P,et al. Automated landslide-risk prediction using web GIS and machine learning models[J]. Sensors (Basel),2021,21(13):4620.

    [13]

    韩丽有,谭钦红,刘家森. 基于CNN-BiLSTM的FMCW雷达生命体征信号检测[J]. 激光杂志,2024,45(3):68 − 73. [HAN Liyou,TAN Qinhong,Llu jiasen. FMCW radar vital sian signal detection based on CNN-BiLSTM[J]. Laser Journal,2024,45(3):68 − 73. (in Chinese with English abstract)]

    HAN Liyou, TAN Qinhong, Llu jiasen. FMCW radar vital sian signal detection based on CNN-BiLSTM[J]. Laser Journal, 2024, 45(3): 68 − 73. (in Chinese with English abstract)

    [14]

    CUI Wenqi,HE Xin,YAO Meng,et al. Landslide image captioning method based on semantic gate and bi-temporal LSTM[J]. ISPRS International Journal of Geo-Information,2020,9(4):194.

    [15]

    WANG Haojie,ZHANG Limin,LUO Hongyu,et al. AI-powered landslide susceptibility assessment in Hong Kong[J]. Engineering Geology,2021,288:106103.

    [16]

    LIN Zian,JI Yuanfa,SUN Xiyan. Landslide displacement prediction based on CEEMDAN method and CNN–BiLSTM model[J]. Sustainability,2023,15(13):10071.

    [17]

    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735 − 1780.

    [18]

    YANG Beibei,YIN Kunlong,LACASSE S,et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides,2019,16(4):677 − 694.

    [19]

    任远芳,牛坤,丁静,等. 基于改进PSO算法优化SVR的信息安全风险评估研究[J]. 贵州大学学报(自然科学版),2024,41(1):103 − 109. [REN Yuanfang, NIU Kun, DING Jing, et al. Research on information security risk assessment based on improved PSO algorithm to optimize SVR[J]. Journal of Guizhou University (Natural Sciences),2024,41(1):103 − 109. (in Chinese with English abstract)]

    REN Yuanfang, NIU Kun, DING Jing, et al. Research on information security risk assessment based on improved PSO algorithm to optimize SVR[J]. Journal of Guizhou University (Natural Sciences), 2024, 41(1): 103 − 109. (in Chinese with English abstract)

    [20]

    KALE S. Development of an adaptive neuro-fuzzy inference system (ANFIS) model to predict sea surface temperature (SST)[J]. Oceanological and Hydrobiological Studies,2020,49(4):354 − 373.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  28
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-11-15
修回日期:  2024-01-16
录用日期:  2025-03-11
刊出日期:  2025-06-25

目录