Analysis on kinematic behavior of potential large-scale rockfall in the Tanbu limestone open-pit mine in Guangzhou City, Guangdong Province
-
摘要:
广州炭步石灰石矿山经30余年开采,形成了最高约195 m的台阶式超高边坡。2012—2022年,矿区发生边坡及危岩体崩塌灾害26起,调查发现坡面仍存有16处危岩体。矿山露天边坡存在的崩塌灾害风险,已威胁到矿山的生产活动。开展危岩体崩落行为分析,对制定矿山危岩体崩塌防范措施意义重大。文章以WY3、WY11危岩体为研究对象,采用Rockfall数值模拟软件,设置
1000 kg重量落石,从同一起点分50次崩落,计算落石的崩落轨迹、弹跳高度、运动动能等行为。结果表明:84%以上落石可达坡脚线,落石弹跳高度为5~15 m,落石最大总动能302.3~399.2 kJ。计算落石崩落轨迹与研究区实际发生落石轨迹相符。Rockfall的崩落行为数值模拟分析成果为矿山危岩体落石危险性分区及防护措施选择提供了有效的数据支撑,文章研究也为大型露天矿山边坡危岩体崩落行为研究提供了具体案例参考。Abstract:The Tanbu limestone mine in Guangzhou has been in operation for over 30 years, resulting in the formation of a series of terraced slopes, with the highest reaching approximately 195 m. Between 2012 and 2022, the mining area experienced 26 incidents of slope and dangerous rock body collapses. Recent investigations have identified 16 remaining dangerous rock bodies on these excavated slopes. The risk of slope collapse in this open-pit mine poses a significant threat to ongoing mining operations. Analyzing the collapse behavior of these dangerous rock masses is of great significance for developing effective preventive measures for the collapse of dangerous rock mass in mines. This study focuses on the WY3 and WY11 dangerous rock mass, using Rockfall numerical simulation software. A
1000 kg rockfall was simulated, released from the same starting point 50 times to calculate its fall trajectory, bounce height, kinetic energy, and other related behaviors. The results indicate that over 84% of the falling rocks reached the foot of the slope, with the bounce heights ranging between 5 and 15 m and total kinetic energy between 302.3 and 399.2 kJ. The simulation results closely matched the actual historical paths observed in the study area. The numerical simulation results of these rockfall behaviors based on the Rockfall software provide valuable data to support the identification of rockfall risk zones and the selection of appropriate protective measures. This study also offers a specific case reference for the analysis of rockfall behavior of dangerous rock masses in large open-pit mine slopes.-
Key words:
- rock mass /
- kinematic behaviors of potential rockfall /
- Rockfall /
- numerical simulation /
- rockfall track /
- risk zoning
-
-
表 1 危岩体稳定性计算评价表
Table 1. Evaluation table for stability calculation of dangerous rock masses
危岩体编号 破坏模式 防治工程等级 工况 稳定性系数 稳定性评价 WY3 倾倒式 Ⅰ 天然 1.36 基本稳定 暴雨 0.98 不稳定 WY11 滑移式 Ⅰ 天然 1.27 基本稳定 暴雨 0.91 不稳定 表 2 危岩体失稳危险性分级标准表
Table 2. Standard table of instability risk classification for dangerous rock masses
危险性
分区级别地质环境
条件复杂
性程度落石灾
害危险
性程度落石点
密度落石点
规模地质灾害危害程度 受威胁对象 潜在经济
损失/万元设备、道路或建筑物 人数/人 危险性大区 复杂—中等 大 大—中等 大—中等 主要设备作业区、矿区主要交通道路、
办公楼、厂房>30 >500 危险性中等区 中等—简单 中等—小 大—中等 大—中等 一般设备区、矿区一般道路、附属建筑物 >3~≤30 >100~≤500 危险性小区 简单 小 小 小 无重要设备及其它建筑物 ≤3 ≤100 -
[1] 冉涛,文宝萍,苏昌,等. 湖北五峰赵家岩崩塌形成机理分析[J]. 水文地质工程地质,2012,39(6):114 − 118. [RAN Tao,WEN Baoping,SU Chang,et al. Analysis of the formation mechanism of the Zhaojiayan rock fall in Wufeng County,Hubei Province[J]. Hydrogeology & Engineering Geology,2012,39(6):114 − 118. (in Chinese with English abstract)]
RAN Tao, WEN Baoping, SU Chang, et al. Analysis of the formation mechanism of the Zhaojiayan rock fall in Wufeng County, Hubei Province[J]. Hydrogeology & Engineering Geology, 2012, 39(6): 114 − 118. (in Chinese with English abstract)
[2] 王琦,胡亚净,宋伟利,等. 岩溶山区危岩稳定性分析及危害性预测——以贵州松桃县长冲危岩体为例[J]. 中国地质灾害与防治学报,2023,34(1):75 − 84. [WANG Qi,HU Yajing,SONG Weili,et al. Stability analysis and hazard prediction of dangerous rock masses in karst mountainous area:A case study of Changchong dangerous rock mass in Songtao County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):6 − 11. (in Chinese with English abstract)]
WANG Qi, HU Yajing, SONG Weili, et al. Stability analysis and hazard prediction of dangerous rock masses in karst mountainous area: A case study of Changchong dangerous rock mass in Songtao County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 6 − 11. (in Chinese with English abstract)
[3] 曾启强,王立朝,刘伟,等. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质,2023,50(5):159 − 168. [ZENG Qiqiang,WANG Lichao,LIU Wei,et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology,2023,50(5):159 − 168. (in Chinese with English abstract)]
ZENG Qiqiang, WANG Lichao, LIU Wei, et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159 − 168. (in Chinese with English abstract)
[4] 许强,黄润秋,殷跃平,等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [XU Qiang,HUANG Runqiu,YIN Yueping,et al. The Jiweishan landslide of June 5,2009 in Wulong,Chongqing:Characteristics and failure mechanism[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract)]
XU Qiang, HUANG Runqiu, YIN Yueping, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2009, 17(4): 433 − 444. (in Chinese with English abstract)
[5] 陈泰江,向欣,章广成. 落石冲击棚洞结构冲切特性研究[J]. 工程地质学报,2023,31(1):199 − 206. [CHEN Taijiang,XIANG Xin,ZHANG Guangcheng. Hertz theory based study on punching characteristics of rockfall impacting on shed-tunnel structure[J]. Journal of Engineering Geology,2023,31(1):199 − 206. (in Chinese with English abstract)]
CHEN Taijiang, XIANG Xin, ZHANG Guangcheng. Hertz theory based study on punching characteristics of rockfall impacting on shed-tunnel structure[J]. Journal of Engineering Geology, 2023, 31(1): 199 − 206. (in Chinese with English abstract)
[6] 霍磊晨,杜岩,谢谟文,等. 基于多层次动力学指标的危岩体识别方法[J]. 岩石力学与工程学报,2022,41(增刊2):3124 − 3131. [HUO Leichen,DU Yan,XIE Mowen,et al. Unstable rock mass identification method based on multi-level dynamic parameters[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 2):3124 − 3131. (in Chinese with English abstract)]
HUO Leichen, DU Yan, XIE Mowen, et al. Unstable rock mass identification method based on multi-level dynamic parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 2): 3124 − 3131. (in Chinese with English abstract)
[7] 孙敬辉,石豫川. 重庆甑子岩崩塌落石动力学特征及危险性分区[J]. 中国地质灾害与防治学报,2019,30(3):6 − 11. [SUN Jinghui,SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zengziyan,Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):6 − 11. (in Chinese with English abstract)]
SUN Jinghui, SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zengziyan, Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 6 − 11. (in Chinese with English abstract)
[8] 何宇航,裴向军,梁靖,等. 基于Rockfall的危岩体危险范围预测及风险评价——以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报,2020,31(4):24 − 33. [HE Yuhang,PEI Xiangjun,LIANG Jing,et al. Risk assessment and range prediction of dangerous rockmass based on rockfall:A case study of the Xuangou Collapse[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):24 − 33. (in Chinese with English abstract)]
HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall: A case study of the Xuangou Collapse[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 24 − 33. (in Chinese with English abstract)
[9] 许强,陈伟. 单体危岩崩塌灾害风险评价方法——以四川省丹巴县危岩崩塌体为例[J]. 地质通报,2009,28(8):1039 − 1046. [XU Qiang,CHEN Wei. Risk assessment method for single rockfall geo-disaster:A case study on the rockfall in Danba County,Sichuan,China[J]. Geological Bulletin of China,2009,28(8):1039 − 1046. (in Chinese with English abstract)]
XU Qiang, CHEN Wei. Risk assessment method for single rockfall geo-disaster: A case study on the rockfall in Danba County, Sichuan, China[J]. Geological Bulletin of China, 2009, 28(8): 1039 − 1046. (in Chinese with English abstract)
[10] SHI Chong,YANG Bo,ZHANG Yiping,et al. Application of discrete-element numerical simulation for calculating the stability of dangerous rock mass:A case study[J]. International Journal of Geomechanics,2020,20(12):1 − 8.
[11] SENGANI F,MULENGA F. An improved hazard assessment chart for rock falls in near vertical blocky rock environments[J]. Environmental Earth Sciences,2021,80(18):647. doi: 10.1007/s12665-021-09950-7
[12] ERFEN H S,MUSTA B. Rock endpoints and barriers estimation of slope failure in pinousuk gravel slopes using Rockfall simulation[J]. IOP Conference Series:Earth and Environmental Science,2022,1103(1):012033. doi: 10.1088/1755-1315/1103/1/012033
[13] BOURGEOIS J,WARREN S,ARMSTRONG J. Utilization of statistical analysis to identify influential slope parameters associated with rockfall at open pit mines[J]. Mining,Metallurgy & Exploration,2023,40(4):1101 − 1112.
[14] 张雄伟,杨泽,周晓超,等. 青麦地大型石灰岩露天矿高陡边坡结构面特征及其对边坡稳定性的影响[J]. 贵州大学学报(自然科学版),2022,39(2):66 − 72. [ZHANG Xiongwei,YANG Ze,ZHOU Xiaochao,et al. Structural plane characteristics of high-steep slope and its influence on slope stability in Qingmaidi large limestone open-pit mine[J]. Journal of Guizhou University(Natural Sciences),2022,39(2):66 − 72. (in Chinese with English abstract)]
ZHANG Xiongwei, YANG Ze, ZHOU Xiaochao, et al. Structural plane characteristics of high-steep slope and its influence on slope stability in Qingmaidi large limestone open-pit mine[J]. Journal of Guizhou University(Natural Sciences), 2022, 39(2): 66 − 72. (in Chinese with English abstract)
[15] 毛元静,李瑶,和大钊,等. 露采矿山台阶边坡结构面特性与破坏机制分析[J]. 中国地质灾害与防治学报,2017,28(3):39 − 45. [MAO Yuanjing,LI Yao,HE Dazhao,et al. Structural planes characteristics and failure mechanism for open-pit mining bench slope[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):39 − 45. (in Chinese with English abstract)]
MAO Yuanjing, LI Yao, HE Dazhao, et al. Structural planes characteristics and failure mechanism for open-pit mining bench slope[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3): 39 − 45. (in Chinese with English abstract)
[16] 王万禄,王黎蝶,侯克鹏,等. 岩体结构面调查及对采场稳定性的影响分析[J]. 现代矿业,2022,640:111 − 118. [WANG Wanlu,WANG Lidie,HOU Kepeng,et al. Investigation of rock mass structural plane and it's influence on stope stability[J]. Modern Mining,2022,640:111 − 118. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-6082.2022.02.029
WANG Wanlu, WANG Lidie, HOU Kepeng, et al. Investigation of rock mass structural plane and it's influence on stope stability[J]. Modern Mining, 2022, 640: 111 − 118. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-6082.2022.02.029
[17] 傅少君,陈乾锐,祝桥桥,等. 边坡滚石运动影响因素浅析[J]. 武汉大学学报(工学版),2009,42(6):795 − 798. [FU Shaojun,CHEN Qianrui,ZHU Qiaoqiao,et al. On factors influencing kinematical properties of rockfall slopes[J]. Engineering Journal of Wuhan University,2009,42(6):795 − 798. (in Chinese with English abstract)]
FU Shaojun, CHEN Qianrui, ZHU Qiaoqiao, et al. On factors influencing kinematical properties of rockfall slopes[J]. Engineering Journal of Wuhan University, 2009, 42(6): 795 − 798. (in Chinese with English abstract)
[18] 陈宇龙. 滚石运动过程中关键参数的影响分析[J]. 岩土工程学报,2013,35(增刊2):190 − 196. [CHEN Yulong. Influence of key factors on trajectories of rockfalls[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 2):190 − 196. (in Chinese with English abstract)]
CHEN Yulong. Influence of key factors on trajectories of rockfalls[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 2): 190 − 196. (in Chinese with English abstract)
[19] 黄润秋,刘卫华. 平台对滚石停积作用试验研究[J]. 岩石力学与工程学报,2009,28(3):516 − 524. [HUANG Runqiu,LIU Weihua. Platform resistent test on rolling rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(3):516 − 524. (in Chinese with English abstract)]
HUANG Runqiu, LIU Weihua. Platform resistent test on rolling rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 516 − 524. (in Chinese with English abstract)
-