Susceptibility analysis of geological hazards based on the random forest weighted information value model: A case study of Shidian County,Yunnan Province
-
摘要:
传统的信息量模型在进行地质灾害易发性评价时,通常只是简单地将各个评价因子的信息量值累加,而忽略了因子之间权重的差异,这在一定程度上影响了易发性分区的科学性和合理性。为了克服这个问题,文章以云南省施甸县为例,引入了随机森林模型来计算各评价因子的权重。在构建了合适的评价指标体系后,逐一计算每个因子的信息量及其权重,然后进行加权求和。按照等间隔分级法,将研究区域划分为极高、高、中、低4个易发性等级。为了验证模型的准确性,选取了近3年内该区最新调查-重点区域地质灾害精细化调查与风险评价成果得到的地质灾害隐患点与易发性分区进行叠加,并通过隐患点密度和ROC曲线进行精度检验对比分析。对比研究结果发现,引入随机森林赋权后,极高易发内隐患点密度由1.754升至1.926,AUC值从0.809升至0.847。研究结果表明:在单一信息量模型中引入随机森林进行赋权能有效表达因子间的权重差异,提升地质灾害易发性分区的精度,在实际应用中具有更高的准确性。
Abstract:Traditional information value models for evaluating geological hazard susceptibility typically involve simply summing the information values of various evaluation factors, without considering the differences in weight among these factors. This can affect the scientific rigor and rationality of susceptibility zoning to some extent. To address this issue, this paper takes Shidian County of Yunnan Province as an example and introduces the random forest model to calculate the weights of each evaluation factor. After constructing an appropriate evaluation index system, the information value and weight of each factor are calculated individually, followed by a weighted summation. According to the equal interval classification method, the study area is then divided into four susceptibility levels--extremely high, high, medium, and low. To verify the accuracy of the model, the latest geological hazard hidden points identified through detailed investigations and risk assessments over the past 3 a were overlaid with the susceptibility zones. The accuracy was analyzed through hazard point density analysis and ROC curve comparison. Based on the comparison of research results, after introducing the random forest weighting, the density of extremely high-risk hidden hazard points increased from 1.754 to 1.926, and the AUC value improved from 0.809 to 0.847. The research results indicate that introducing random forest for weighting in a single information quantity model can effectively reflects the weight differences among factors, enhancing the precision of geological disaster susceptibility zoning. This method shows higher accuracy in practical applications.
-
Key words:
- random forest /
- information model /
- geological hazard /
- susceptibility evaluation
-
-
表 1 地质数据来源
Table 1. Sources of geological data
数据 数据来源及比例尺 数据格式 1 坡度 ASTER GDEM v3 30 m分辨率数字高程数据 GeoTIFF 2 地形起伏度 ASTER GDEM v3 30 m分辨率数字高程数据 GeoTIFF 3 工程岩组 云南省重点区域地质灾害精细化调查与风险评价(2022) MapGIS 4 断层 云南省重点区域地质灾害精细化调查与风险评价(2022) MapGIS 5 河网密度 ASTER GDEM v3 30 m分辨率数字高程数据 GeoTIFF 6 路网密度 ASTER GDEM v3 30 m分辨率数字高程数据 GeoTIFF 7 植被覆盖度 Landsat 8 OLI_TIRS遥感影像 Tif 8 地质灾害 云南省重点区域地质灾害精细化调查与风险评价(2022) MapGIS 表 2 评价因子分级区间信息量值和加权信息量值
Table 2. Information value and weighted information value for classification intervals of evaluation factors
评价因子 分级区间 信息量值 权重 加权信息量 坡度/(°) [0,9) 0.1667 0.1028 0.0171 [9,17) 0.2674 0.0275 [17,24) − 1.5160 − 0.1558 [24,31) − 1.9337 − 0.1988 [31,40) − − [40,78] − − 地形起伏度/m [0,6) − 0.1311 0.1152 − 0.0151 [6,12) 0.6128 0.0706 [12,18) − 0.1752 − 0.0202 [18,25) − 0.6855 − 0.0790 [25,35) − 1.2903 − 0.1486 [35,147] − − 工程岩组 1 − 0.0905 0.1416 − 0.0128 2 − 0.9164 − 0.1298 3 0.1037 0.0147 4 0.1512 0.0214 5 − 0.4600 − 0.0651 6 2.1236 0.3007 7 − − 8 − − 距断层距离/m 0~400 0.2333 0.1269 0.0296 400~800 0.0164 0.0021 800~ 1200 0.0320 0.0041 1200 ~1600 − 0.6435 − 0.0817 > 1600 − 0.2213 − 0.0281 河网密度 [0,48) − 0.1270 0.1275 − 0.0162 [48,111) 0.3167 0.0404 [111,184) − 0.2150 − 0.0274 [184,293) − 0.3227 − 0.0411 [293,618] − 0.9024 − 0.1151 路网密度 [0,158) − 1.4474 0.2101 − 0.3041 [158,222) − 0.0137 − 0.0029 [222,280) 0.0063 0.0013 [280,350) 0.1947 0.0409 [350,590] 0.3860 0.0811 植被覆盖度 [0,0.2) 0.5733 0.1759 0.1009 [0.2,0.4) 0.5212 0.0917 [0.4,0.6) 0.0344 0.0061 [0.6,0.8) − 0.1182 − 0.0208 [0.8,1.0) − 1.4406 − 0.2534 表 3 信息量模型各评价分区面积和地质灾害隐患点占比
Table 3. Aera and proportion of geological hazard points in each evaluation zone using the information value model
易发性分区 隐患点个数
/个分区面积
/km2隐患点比例
/%分区比例
/%隐患点
密度极高易发区 108 703.01 61.36 34.99 1.754 高易发区 36 634.70 20.45 31.59 0.647 中易发区 25 465.71 14.20 23.18 0.613 低易发区 7 205.59 3.98 10.23 0.389 表 4 随机森林赋权信息量模型各评价分区面积和地质灾害隐患点占比
Table 4. Aera and proportion of geological hazard points in each evaluation zone using the random forest weighted information value model
易发性分区 隐患点个数
/个分区面积
/km2隐患点比例
/%分区比例
/%隐患点
密度极高易发区 112 663.63 63.64 33.03 1.926 高易发区 40 668.09 22.73 33.25 0.683 中易发区 23 428.31 13.07 21.32 0.613 低易发区 1 248.98 0.57 12.39 0.046 -
[1] 齐信,唐川,陈州丰,等. 地质灾害风险评价研究[J]. 自然灾害学报,2012,21(5):33 − 40. [QI Xin,TANG Chuan,CHEN Zhoufeng,et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters,2012,21(5):33 − 40. (in Chinese with English abstract)]
QI Xin, TANG Chuan, CHEN Zhoufeng, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5): 33 − 40. (in Chinese with English abstract)
[2] 马彦霞. 地质灾害易发性风险评估及预测分析[J]. 世界有色金属,2021(15):144 − 145. [MA Yanxia. Risk assessment and prediction analysis of geological disaster[J]. World Nonferrous Metals,2021(15):144 − 145. (in Chinese with English abstract)]
MA Yanxia. Risk assessment and prediction analysis of geological disaster[J]. World Nonferrous Metals, 2021(15): 144 − 145. (in Chinese with English abstract)
[3] 刘业森,张晓蕾,郭良. 自然灾害调查数据的多尺度异常检测方法研究及应用[J]. 地球信息科学学报,2017,19(12):1653 − 1660. [LIU Yesen,ZHANG Xiaolei,GUO Liang. Study and application of the method of multi-scale outliers detection of natural disaster investigation data[J]. Journal of Geo-Information Science,2017,19(12):1653 − 1660. (in Chinese with English abstract)]
LIU Yesen, ZHANG Xiaolei, GUO Liang. Study and application of the method of multi-scale outliers detection of natural disaster investigation data[J]. Journal of Geo-Information Science, 2017, 19(12): 1653 − 1660. (in Chinese with English abstract)
[4] 王宇. 云南省地质灾害防治与研究历史评述[J]. 灾害学,2019,34(3):134 − 139. [WANG Yu. Historical review of geological disaster prevention and research in Yunnan Province,China[J]. Journal of Catastrophology,2019,34(3):134 − 139. (in Chinese with English abstract)]
WANG Yu. Historical review of geological disaster prevention and research in Yunnan Province, China[J]. Journal of Catastrophology, 2019, 34(3): 134 − 139. (in Chinese with English abstract)
[5] 王宇. 云南省崩塌滑坡泥石流灾害及防治[J]. 地质灾害与环境保护,1998,9(4):38 − 41. [WANG Yu. Hazards collapse landslide and debris flow in Yunnan and their control[J]. Journal of Geological Hazards and Environment Preservation,1998,9(4):38 − 41. (in Chinese)]
WANG Yu. Hazards collapse landslide and debris flow in Yunnan and their control[J]. Journal of Geological Hazards and Environment Preservation, 1998, 9(4): 38 − 41. (in Chinese)
[6] 唐亚明,张茂省,李林,等. 滑坡易发性危险性风险评价例析[J]. 水文地质工程地质,2011,38(2):125 − 129. [TANG Yaming,ZHANG Maosheng,LI Lin,et al. Discrimination to the landslide susceptibility,hazard and risk assessment[J]. Hydrogeology & Engineering Geology,2011,38(2):125 − 129. (in Chinese with English abstract)]
TANG Yaming, ZHANG Maosheng, LI Lin, et al. Discrimination to the landslide susceptibility, hazard and risk assessment[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 125 − 129. (in Chinese with English abstract)
[7] 于开宁,吴涛,魏爱华,等. 基于AHP-突变理论组合模型的地质灾害危险性评价——以河北平山县为例[J]. 中国地质灾害与防治学报,2023,34(2):146 − 155. [YU Kaining,WU Tao,WEI Aihua,et al. Geological hazard assessment based on the models of AHP,catastrophe theory and their combination:A case study in Pingshan County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):146 − 155. (in Chinese with English abstract)]
YU Kaining, WU Tao, WEI Aihua, et al. Geological hazard assessment based on the models of AHP, catastrophe theory and their combination: A case study in Pingshan County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 146 − 155. (in Chinese with English abstract)
[8] 冯卫,唐亚明,马红娜,等. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质,2021,54(2):282 − 288. [FENG Wei,TANG Yaming,MA Hongna,et al. Comprehensive risk assessment of multi-hazard natural disasters in Xianyang City based on AHP[J]. Northwestern Geology,2021,54(2):282 − 288. (in Chinese with English abstract)]
FENG Wei, TANG Yaming, MA Hongna, et al. Comprehensive risk assessment of multi-hazard natural disasters in Xianyang City based on AHP[J]. Northwestern Geology, 2021, 54(2): 282 − 288. (in Chinese with English abstract)
[9] SHANO L,RAGHUVANSHI T K,METEN M. Landslide susceptibility mapping using frequency ratio model:The case of Gamo highland,south Ethiopia[J]. Arabian Journal of Geosciences,2021,14(7):623.
[10] 赵伯驹,李宁,幸夫诚,等. 基于I-CF模型的四川德格县滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):32 − 42. [ZHAO Boju,LI Ning,XING Fucheng,et al. Landslide geological hazard assessment based on the I-CF model of Dege County in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):32 − 42. (in Chinese with English abstract)]
ZHAO Boju, LI Ning, XING Fucheng, et al. Landslide geological hazard assessment based on the I-CF model of Dege County in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 32 − 42. (in Chinese with English abstract)
[11] 阮沈勇,黄润秋. 基于GIS的信息量法模型在地质灾害危险性区划中的应用[J]. 成都理工学院学报,2001,28(1):89 − 92. [RUAN Shenyong,HUANG Runqiu. Application of GIS-based information model on assessment of geological hazards risk[J]. Journal of Chengdu University of Technology,2001,28(1):89 − 92. (in Chinese with English abstract)]
RUAN Shenyong, HUANG Runqiu. Application of GIS-based information model on assessment of geological hazards risk[J]. Journal of Chengdu University of Technology, 2001, 28(1): 89 − 92. (in Chinese with English abstract)
[12] 李文彦,王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报,2020,29(4):213 − 220. [LI Wenyan,WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters,2020,29(4):213 − 220. (in Chinese with English abstract)]
LI Wenyan, WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters, 2020, 29(4): 213 − 220. (in Chinese with English abstract)
[13] 许冲,戴福初,徐锡伟. 基于GIS平台与证据权的地震滑坡易发性评价[J]. 地球科学,2011,36(6):1155 − 1164. [XU Chong,DAI Fuchu,XU Xiwei. Earthquake triggered landslide susceptibility evaluation based on GIS platform and weight-of-evidence modeling[J]. Earth Science,2011,36(6):1155 − 1164. (in Chinese with English abstract)]
XU Chong, DAI Fuchu, XU Xiwei. Earthquake triggered landslide susceptibility evaluation based on GIS platform and weight-of-evidence modeling[J]. Earth Science, 2011, 36(6): 1155 − 1164. (in Chinese with English abstract)
[14] 白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):128 − 138. [BAI Guangshun,YANG Xuemei,ZHU Jieyong,et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming,China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):128 − 138. (in Chinese with English abstract)]
BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128 − 138. (in Chinese with English abstract)
[15] 郭子正,殷坤龙,付圣,等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学,2019,44(12):4299 − 4312. [GUO Zizheng,YIN Kunlong,FU Sheng,et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science,2019,44(12):4299 − 4312. (in Chinese with English abstract)]
GUO Zizheng, YIN Kunlong, FU Sheng, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44(12): 4299 − 4312. (in Chinese with English abstract)
[16] 刘帅,朱杰勇,杨得虎,等. 基于斜坡单元与随机森林模型的元阳县崩滑地质灾害易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):144 − 150. [LIU Shuai,ZHU Jieyong,YANG Dehu,et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):144 − 150. (in Chinese with English abstract)]
LIU Shuai, ZHU Jieyong, YANG Dehu, et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 144 − 150. (in Chinese with English abstract)
[17] 曾斌,吕权儒,寇磊,等. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):105 − 113. [ZENG Bin,LYU Quanru,KOU Lei,et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):105 − 113. (in Chinese with English abstract)]
ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 105 − 113. (in Chinese with English abstract)
[18] 李国营,刘平,张凯,等. 量纲统一在滑坡易发性评价中的影响分析[J]. 水文地质工程地质,2024,51(3):118 − 129. [LI Guoying,LIU Ping,ZHANG Kai,et al. Analysis of the influence of dimensional unity in landslide susceptibility assessment[J]. Hydrogeology & Engineering Geology,2024,51(3):118 − 129. (in Chinese with English abstract)]
LI Guoying, LIU Ping, ZHANG Kai, et al. Analysis of the influence of dimensional unity in landslide susceptibility assessment[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 118 − 129. (in Chinese with English abstract)
[19] HUANG Cheng,LI Fang,WEI Lei,et al. Landslide susceptibility modeling using a deep random neural network[J]. Applied Sciences,2022,12(24):12887.
[20] PARK S,CHOI C,KIM B,et al. Landslide susceptibility mapping using frequency ratio,analytic hierarchy process,logistic regression,and artificial neural network methods at the Inje area,Korea[J]. Environmental Earth Sciences,2013,68(5):1443 − 1464.
[21] 殷坤龙,晏同珍. 滑坡预测及相关模型[J]. 岩石力学与工程学报,1996,15(1):1 − 8. [YIN Kunlong,YAN Tongzhen. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering,1996,15(1):1 − 8. (in Chinese)]
YIN Kunlong, YAN Tongzhen. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 1 − 8. (in Chinese)
[22] 殷坤龙. 滑坡灾害风险分析[M]. 北京:科学出版社,2010. [YIN Kunlong. Risk analysis of landslide disaster[M]. Beijing:Science Press,2010. (in Chinese)]
YIN Kunlong. Risk analysis of landslide disaster[M]. Beijing: Science Press, 2010. (in Chinese)
[23] 殷坤龙,朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘,2001,8(2):279 − 284. [YIN Kunlong,ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers,2001,8(2):279 − 284. (in Chinese with English abstract)]
YIN Kunlong, ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers, 2001, 8(2): 279 − 284. (in Chinese with English abstract)
[24] 郝国栋. 基于随机森林模型的商南县滑坡易发性评价[D]. 西安:西安科技大学,2019. [HAO Guodong. Landslide susceptibility assessment based on random forest model in Shangnan County [D]. Xi’an:Xi’an University of Science and Technology,2019. (in Chinese with English abstract)]
HAO Guodong. Landslide susceptibility assessment based on random forest model in Shangnan County [D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)
[25] 张书豪,吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学,2019(9):3115 − 3134. [ZHANG Shuhao,WU Guang. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science,2019(9):3115 − 3134. (in Chinese with English abstract)]
ZHANG Shuhao, WU Guang. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019(9): 3115 − 3134. (in Chinese with English abstract)
[26] 刘永垚,第宝锋,詹宇,等. 基于随机森林模型的泥石流易发性评价——以汶川地震重灾区为例[J]. 山地学报,2018,36(5):765 − 773. [LIU Yongyao,DI Baofeng,ZHAN Yu,et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model[J]. Mountain Research,2018,36(5):765 − 773. (in Chinese)]
LIU Yongyao, DI Baofeng, ZHAN Yu, et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model[J]. Mountain Research, 2018, 36(5): 765 − 773. (in Chinese)
-