Application of different machine learning models in landslide susceptibility assessment in Badong County, Hubei Province
-
摘要:
中国是世界上发生滑坡灾害最频繁的国家之一,滑坡易发性评价有助于防灾减灾工作。由于不同机器学习模型在不同区域的适配程度不同,为更好开展湖北省巴东县的滑坡灾害防治工作,选取坡度、坡向、曲率、起伏度、地层、覆盖层、归一化植被指数、道路密度、水系密度、斜坡结构10个影响因子,采用逻辑回归、支持向量机、多层感知机和随机森林4种模型进行滑坡易发性评价。并通过受试者工作特征曲线、均方误差与决定系数等指标、滑坡-研究区占比3种评价方式用于评价模型精度。试验结果表明:不同模型在不同评价方式中存在差异,但总体而言,RF模型精度最高且绘制出的易发性分区图更合理。4个模型绘制的易发性区域分布图相似,极高易发区和高易发区主要分布于南边沿江地区,西南沿岸的官渡口镇、焦家湾村等附近地区表现出较高易发性,该评价结果可以为巴东县的滑坡治理提供参考。
Abstract:China is one of the countries most frequently affected by landslide disasters in the world, making landslide susceptibility assessment crucial for effective disaster prevention and mitigation. Due to variations in the adaptability of different machine learning models in different regions, in order to better carry out landslide disaster prevention and control work in Badong County, Hubei Province, ten influencing factors including slope gradient, slope direction, curvature, degree of undulation, stratigraphy, overburden, NDVI, road density, water system density, and slope structure were selected. 4 different models, including logistic regression, support vector machine, multilayer perceptron, and random forest, were used for landslide susceptibility evaluation. Three evaluation methods were used to assess the accuracy of the model: receiver operating characteristic curves, mean square error, determination coefficient, and the ratio of landslide to study area. The experimental results show that there are differences among the models in different evaluation methods. Overall, the RF model exhibits the highest accuracy and generates more reasonable susceptibility zoning maps. The susceptibility distribution maps generated by the four models are similar, with high and very high susceptibility areas predominantly located in the southern riverside area. Areas near Guandukou Town and Jiaojiawan Village along the southwest coast exhibit relatively high susceptibility. The assessment results can provide reference for landslide control in Badong County.
-
Key words:
- Three Gorges Reservoir area /
- landslides /
- susceptibility assessment /
- machine learning
-
-
表 1 各模型评价结果分区占比表
Table 1. Proportion of landslide zone assessment results for each model
极高/% 高/% 中/% 低/% LR 26.36 23.98 24.29 25.37 SVM 16.53 19.39 29.34 34.74 MLP 12.24 36.61 33.04 18.11 RF 20.16 25.58 20.75 33.51 -
[1] 吴宏阳,周超,梁鑫,等. 基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):141 − 152. [WU Hongyang,ZHOU Chao,LIANG Xin,et al. Assessment of landslide susceptibility mapping based on XGBoost model:A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):141 − 152. (in Chinese with English abstract)]
WU Hongyang, ZHOU Chao, LIANG Xin, et al. Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 141 − 152. (in Chinese with English abstract)
[2] 陈国金. 三峡库区巴东城区岸坡稳定性问题调查研究与风险控制[J]. 资源环境与工程,2023,37(3):292 − 300. [CHEN Guojin. Stability investigation and risk control of bank slope in Badong urban area,Three Gorges Reservoir area[J]. Resources Environment & Engineering,2023,37(3):292 − 300. (in Chinese with English abstract)]
CHEN Guojin. Stability investigation and risk control of bank slope in Badong urban area, Three Gorges Reservoir area[J]. Resources Environment & Engineering, 2023, 37(3): 292 − 300. (in Chinese with English abstract)
[3] 张曦,陈丽霞,徐勇,等. 两种斜坡单元划分方法对滑坡灾害易发性评价的对比研究[J]. 安全与环境工程,2018,25(1):12 − 17. [ZHANG Xi,CHEN Lixia,XU Yong,et al. Comparison of two methods for slope unit division in landslide susceptibility evaluation[J]. Safety and Environmental Engineering,2018,25(1):12 − 17. (in Chinese with English abstract)]
ZHANG Xi, CHEN Lixia, XU Yong, et al. Comparison of two methods for slope unit division in landslide susceptibility evaluation[J]. Safety and Environmental Engineering, 2018, 25(1): 12 − 17. (in Chinese with English abstract)
[4] 曾斌,吕权儒,寇磊,等. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):105 − 113. [ZENG Bin,LYU Quanru,KOU Lei,et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):105 − 113. (in Chinese with English abstract)]
ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 105 − 113. (in Chinese with English abstract)
[5] 王凯,张少杰,韦方强. 斜坡单元提取方法研究进展和展望[J]. 长江科学院院报,2020,37(6):85 − 93. [WANG Kai,ZHANG Shaojie,WEI Fangqiang. Slope unit extraction methods:Advances and prospects[J]. Journal of Yangtze River Scientific Research Institute,2020,37(6):85 − 93. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20190210
WANG Kai, ZHANG Shaojie, WEI Fangqiang. Slope unit extraction methods: Advances and prospects[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6): 85 − 93. (in Chinese with English abstract) doi: 10.11988/ckyyb.20190210
[6] 刘军旗,刘强,刘千慧,等. 大数据时代地质灾害数据管理及应用模式探讨[J]. 地质科技通报,2021,40(6):276 − 282. [LIU Junqi,LIU Qiang,LIU Qianhui,et al. Discussion of geological hazard data management and application model in big data era[J]. Bulletin of Geological Science and Technology,2021,40(6):276 − 282. (in Chinese with English abstract)]
LIU Junqi, LIU Qiang, LIU Qianhui, et al. Discussion of geological hazard data management and application model in big data era[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 276 − 282. (in Chinese with English abstract)
[7] 刘宝生,陈刚,程刚建. 江苏南京地质灾害风险评价[J]. 中国地质灾害与防治学报,2023,34(4):97 − 104. [LIU Baosheng,CHEN Gang,CHENG Gangjian. Risk assessment of geological disasters in Nanjing,Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):97 − 104. (in Chinese with English abstract)]
LIU Baosheng, CHEN Gang, CHENG Gangjian. Risk assessment of geological disasters in Nanjing, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 97 − 104. (in Chinese with English abstract)
[8] 王俊德,杜晓阳,黄天浩,等. 河南省嵩县地质灾害风险评价[J]. 中国地质灾害与防治学报,2023,34(4):86 − 96. [WANG Junde,DU Xiaoyang,HUANG Tianhao,et al. Risk assessment of geological hazards in Song County,Henan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):86 − 96. (in Chinese with English abstract)]
WANG Junde, DU Xiaoyang, HUANG Tianhao, et al. Risk assessment of geological hazards in Song County, Henan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 86 − 96. (in Chinese with English abstract)
[9] 牟家琦,庄建琦,王世宝,等. 基于深度神经网络模型的雅安市滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(3):157 − 168. [MU Jiaqi,ZHUANG Jianqi,WANG Shibao,et al. Evaluation of landslide susceptibility in Ya’an City based on depth neural network model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):157 − 168. (in Chinese with English abstract)]
MU Jiaqi, ZHUANG Jianqi, WANG Shibao, et al. Evaluation of landslide susceptibility in Ya’an City based on depth neural network model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 157 − 168. (in Chinese with English abstract)
[10] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]
ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)
[11] 郭飞,王秀娟,陈玺,等. 基于不同模型的赣南地区小型削方滑坡易发性评价对比分析[J]. 中国地质灾害与防治学报,2022,33(6):125 − 133. [GUO Fei,WANG Xiujuan,CHEN Xi,et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):125 − 133. (in Chinese with English abstract)]
GUO Fei, WANG Xiujuan, CHEN Xi, et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 125 − 133. (in Chinese with English abstract)
[12] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)]
HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156 − 167. (in Chinese with English abstract)
[13] WANG Jiaqi,SUN Pengfei,CHEN Leilei,et al. Recent advances of deep learning in geological hazard forecasting[J]. Computer Modeling in Engineering & Sciences,2023,137(2):1381 − 1418.
[14] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价——以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:A case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese with English abstract)]
XIA Hui, YIN Kunlong, LIANG Xin, et al. Landslide susceptibility assessment based on SVM-ANN Models: A case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 13 − 19. (in Chinese with English abstract)
[15] 何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327 − 336. [HE Qing,LI Ning,LUO Wenjuan,et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence,2014,27(4):327 − 336. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-6059.2014.04.007
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327 − 336. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-6059.2014.04.007
[16] YOUSSEF K,SHAO K,MOON S,et al. Landslide susceptibility modeling by interpretable neural network[J]. Communications Earth and Environment,2023,4(1):162. doi: 10.1038/s43247-023-00806-5
[17] NACHAPPA T,GHORBANZADEH O,GHOLAMNIA K,et al. Multi-hazard exposure mapping using machine learning for the state of Salzburg,Austria[J]. Remote Sensing,2020,12(17):2757. doi: 10.3390/rs12172757
[18] 马晨曦. 后三峡时期库区城市人居环境建设评价研究——以巴东、秭归为例[D]. 重庆:重庆大学,2019. [MA Chenxi. Evaluation of urban human settlement environment construction in the reservoir area in the post-Three Gorges period[D]. Chongqing:Chongqing University,2019. (in Chinese with English abstract)]
MA Chenxi. Evaluation of urban human settlement environment construction in the reservoir area in the post-Three Gorges period[D]. Chongqing: Chongqing University, 2019. (in Chinese with English abstract)
[19] 左可顺. 高切坡数据集成与高效管理研究——以三峡湖北库区为例[D]. 武汉:中国地质大学(武汉),2023. [ZUO Keshun. Research on data integration and efficient management of high cutting slope:Taking Three Gorges Hubei Reservoir area as an example[D]. Wuhan:China University of Geosciences (Wuhan),2023. (in Chinese with English abstract)]
ZUO Keshun. Research on data integration and efficient management of high cutting slope: Taking Three Gorges Hubei Reservoir area as an example[D]. Wuhan: China University of Geosciences (Wuhan), 2023. (in Chinese with English abstract)
[20] 石菊松,张永双,董诚,等. 基于GIS技术的巴东新城区滑坡灾害危险性区划[J]. 地球学报,2005,26(3):275 − 282. [SHI Jusong,ZHANG Yongshuang,DONG Cheng,et al. GIS-based landslide hazard zonation of the new Badong County site[J]. Acta Geosicientia Sinica,2005,26(3):275 − 282. (in Chinese with English abstract)] doi: 10.3321/j.issn:1006-3021.2005.03.014
SHI Jusong, ZHANG Yongshuang, DONG Cheng, et al. GIS-based landslide hazard zonation of the new Badong County site[J]. Acta Geosicientia Sinica, 2005, 26(3): 275 − 282. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2005.03.014
[21] 王瑛,林齐根,史培军. 中国地质灾害伤亡事件的空间格局及影响因素[J]. 地理学报,2017,72(5):906 − 917. [WANG Ying,LIN Qigen,SHI Peijun. Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica,2017,72(5):906 − 917. (in Chinese with English abstract)] doi: 10.11821/dlxb201705011
WANG Ying, LIN Qigen, SHI Peijun. Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica, 2017, 72(5): 906 − 917. (in Chinese with English abstract) doi: 10.11821/dlxb201705011
[22] 吴润泽,程温鸣,刘军旗,等. 三峡库区地质灾害防治信息系统及预警指挥系统数据管理模式探讨[J]. 中国地质灾害与防治学报,2018,29(5):102 − 107. [WU Runze,CHENG Wenming,LIU Junqi,et al. Discussion on the data management mode of geologic disaster prevention and control information system and early warning command system in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):102 − 107. (in Chinese with English abstract)]
WU Runze, CHENG Wenming, LIU Junqi, et al. Discussion on the data management mode of geologic disaster prevention and control information system and early warning command system in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 102 − 107. (in Chinese with English abstract)
[23] LIU Junqi,HUANG Xuebin,WU Chonglong,et al. From the area to the point-study on the key technology of 3D geological hazard modeling in Three Gorges Reservoir area[J]. Journal of Earth Science,2012,23(2):199 − 206. doi: 10.1007/s12583-012-0246-5
[24] 刘越凡,付萧,朱庆,等. 顾及地貌形态特征的精细斜坡单元高效分区划分[J]. 测绘科学,2023,48(4):211 − 220. [LIU Yuefan,FU Xiao,ZHU Qing,et al. An efficient and fine slope units division method with consideration of the regional geomorphological characteristics[J]. Science of Surveying and Mapping,2023,48(4):211 − 220. (in Chinese with English abstract)]
LIU Yuefan, FU Xiao, ZHU Qing, et al. An efficient and fine slope units division method with consideration of the regional geomorphological characteristics[J]. Science of Surveying and Mapping, 2023, 48(4): 211 − 220. (in Chinese with English abstract)
[25] HUANG Faming,CAO Zhongshan,JIANG Shuihua,et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model[J]. Landslides,2020,17(12):2919 − 2930. doi: 10.1007/s10346-020-01473-9
[26] 刘丽娜,许冲,徐锡伟,等. GIS支持下基于AHP方法的2013年芦山地震区滑坡危险性评价[J]. 灾害学,2014,29(4):183 − 191. [LIU Lina,XU Chong,XU Xiwei,et al. GIS-based landslide hazard evaluation using AHP method in the 2013 Lushan earthquake region[J]. Journal of Catastrophology,2014,29(4):183 − 191. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-811X.2014.04.034
LIU Lina, XU Chong, XU Xiwei, et al. GIS-based landslide hazard evaluation using AHP method in the 2013 Lushan earthquake region[J]. Journal of Catastrophology, 2014, 29(4): 183 − 191. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2014.04.034
[27] 李松林,许强,汤明高,等. 三峡库区滑坡空间发育规律及其关键影响因子[J]. 地球科学,2020,45(1):341 − 354. [LI Songlin,XU Qiang,TANG Minggao,et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Earth Science,2020,45(1):341 − 354. (in Chinese with English abstract)]
LI Songlin, XU Qiang, TANG Minggao, et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Earth Science, 2020, 45(1): 341 − 354. (in Chinese with English abstract)
[28] 石菊松,徐瑞春,石玲,等. 基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J]. 地学前缘,2007,14(6):119 − 128. [SHI Jusong,XU Ruichun,SHI Ling,et al. ETM+ imagery and GIS-based landslide susceptibility mapping for the regional area of Geheyan Reservoir on the Qingjiang River,Hubei Province,China[J]. Earth Science Frontiers,2007,14(6):119 − 128. (in Chinese with English abstract)] doi: 10.3321/j.issn:1005-2321.2007.06.015
SHI Jusong, XU Ruichun, SHI Ling, et al. ETM+ imagery and GIS-based landslide susceptibility mapping for the regional area of Geheyan Reservoir on the Qingjiang River, Hubei Province, China[J]. Earth Science Frontiers, 2007, 14(6): 119 − 128. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.06.015
[29] WANG Jinge,XIANG Wei,LU Ning. Landsliding triggered by reservoir operation:A general conceptual model with a case study at Three Gorges Reservoir[J]. Acta Geotechnica,2014,9(5):771 − 788. doi: 10.1007/s11440-014-0315-2
[30] 郭惠娟,唐南奇,林金宝. 基于GIS的仙游县土地利用与滑坡灾害敏感性分析[J]. 福建农林大学学报(自然科学版),2010,39(4):417 − 420. [GUO Huijuan,TANG Nanqi,LIN Jinbao. Sensibility analysis of land-use and landslide hazard based on GIS in Xianyou County[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2010,39(4):417 − 420. (in Chinese with English abstract)]
GUO Huijuan, TANG Nanqi, LIN Jinbao. Sensibility analysis of land-use and landslide hazard based on GIS in Xianyou County[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2010, 39(4): 417 − 420. (in Chinese with English abstract)
[31] 章昱,王磊,伏永朋,等. 基于斜坡单元与信息量法的丹江口库区典型流域地质灾害易发性评价[J]. 华南地质,2023,39(3):512 − 522. [ZHANG Yu,WANG Lei,FU Yongpeng,et al. Evaluation of geological disaster susceptibility in typical watershed of Danjiangkou Reservoir area based on slope unit and information method[J]. South China Geology,2023,39(3):512 − 522. (in Chinese with English abstract)] doi: 10.3969/j.issn.2097-0013.2023.03.010
ZHANG Yu, WANG Lei, FU Yongpeng, et al. Evaluation of geological disaster susceptibility in typical watershed of Danjiangkou Reservoir area based on slope unit and information method[J]. South China Geology, 2023, 39(3): 512 − 522. (in Chinese with English abstract) doi: 10.3969/j.issn.2097-0013.2023.03.010
[32] 刘亮,杨洋. 基于网格单元和随机森林的滑坡易发性评价[J]. 石化技术,2023,30(6):180 − 182. [LIU Liang,YANG Yang. Landslide susceptibility evaluation based on grid cells and random forest[J]. Petrochemical Industry Technology,2023,30(6):180 − 182. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-0235.2023.06.060
LIU Liang, YANG Yang. Landslide susceptibility evaluation based on grid cells and random forest[J]. Petrochemical Industry Technology, 2023, 30(6): 180 − 182. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-0235.2023.06.060
[33] 陈刚,郝社锋,蒋波等. 基于机载LiDAR技术植被茂密区小型滑坡识别与评价[J]. 自然资源遥感,2023,36(3):196 − 205. [CHEN Gang,HE Shefeng,JIANG Bo,et al. Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technology [J]. Remote Sensing of Natural Resources,2023,36(3):196 − 205. (in Chinese with English abstract)]
CHEN Gang, HE Shefeng, JIANG Bo, et al. Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technology [J]. Remote Sensing of Natural Resources, 2023, 36(3): 196 − 205. (in Chinese with English abstract)
[34] 张玺国,周雄冬,徐梦珍,等. 西藏地质灾害易发性及对水能开发适宜度影响[J]. 地理学报,2022,77(7):1603 − 1614. [ZHANG Xiguo,ZHOU Xiongdong,XU Mengzhen,et al. Distribution of hydropower development suitability in Tibet in the face of geological hazard susceptibility[J]. Acta Geographica Sinica,2022,77(7):1603 − 1614. (in Chinese with English abstract)] doi: 10.11821/dlxb202207003
ZHANG Xiguo, ZHOU Xiongdong, XU Mengzhen, et al. Distribution of hydropower development suitability in Tibet in the face of geological hazard susceptibility[J]. Acta Geographica Sinica, 2022, 77(7): 1603 − 1614. (in Chinese with English abstract) doi: 10.11821/dlxb202207003
[35] 邹浩,贾琳,郑路路,等. 基于覆盖土层厚度识别的区域斜坡降雨入渗稳定性定量评价[J]. 地球科学,2023,49(9):3347 − 3362. [ZHOU Hao,JIA Lin,ZHENG Lulu,et al. Regional Hillslope Stability Analysis under Rainfall Based on Characterization of Overburden Soil Layer Thickness[J]. Earth Science,2023,49(9):3347 − 3362. (in Chinese with English abstract)]
ZHOU Hao, JIA Lin, ZHENG Lulu, et al. Regional Hillslope Stability Analysis under Rainfall Based on Characterization of Overburden Soil Layer Thickness[J]. Earth Science, 2023, 49(9): 3347 − 3362. (in Chinese with English abstract)
[36] 丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1):2 − 10. [DING Shifei,QI Bingjuan,TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2 − 10. (in Chinese with English abstract)]
DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2 − 10. (in Chinese with English abstract)
[37] WANG Sen,LING Sixiang,WU Xiyong,et al. Key predisposing factors and susceptibility assessment of landslides along the Yunnan–Tibet traffic corridor,Tibetan Plateau:Comparison with the LR,RF,NB,and MLP techniques[J]. Frontiers in Earth Science,2023,10:1100363. doi: 10.3389/feart.2022.1100363
[38] YU Haiwei,PEI Wenjie,ZHANG Jingyi,et al. Landslide susceptibility mapping and driving mechanisms in a vulnerable region based on multiple machine learning models[J]. Remote Sensing,2023,15(7):1886. doi: 10.3390/rs15071886
[39] RAGHU S,SRIRAAM N. Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures[J]. Expert Systems with Applications,2017,89(C):205 − 221.
[40] TASER P Y. Application of bagging and boosting approaches using decision tree-based algorithms in diabetes risk prediction[C]//The 7th International Management Information Systems Conference. Basel Switzerland:MDPI,2021,89(C):205 − 221.
[41] 窦杰,向子林,许强,等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学,2023,48(5):1657 − 1674. [DOU Jie,XIANG Zilin,XU Qiang,et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science,2023,48(5):1657 − 1674. (in Chinese with English abstract)]
DOU Jie, XIANG Zilin, XU Qiang, et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 2023, 48(5): 1657 − 1674. (in Chinese with English abstract)
[42] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]
SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese with English abstract)
[43] NAMAN KAUR,HIMANSHU. Logistic regression:A basic approach[J]. Information and Communication Technol- ogy for Competitive Strategies,2022,623:481 − 488.
[44] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价——以三峡库区湖北段为例[J]. 地球科学,2021,46(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021,46(1):321 − 330. (in Chinese with English abstract)]
WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021, 46(1): 321 − 330. (in Chinese with English abstract)
-