Study on rockfall migration and fragmentation characteristics considering initial motion states
-
摘要:
高位落石通常具有较大的崩落高度和势能,运动过程中动力破碎效应明显。因此,高位落石的致灾范围是防灾减灾研究中的难点和热点问题之一。将落石崩落过程中的运动状态分解为平动与滚动两种形式,通过离散元数值模型试验,统计不同初始运动状态下落石解体后碎屑的粒径分布与运移距离,深入分析落石初始运动状态对其动力破碎程度以及运移距离的影响。结果显示:(1)初始运动状态显著影响落石的破碎程度,进而间接改变落石的运移距离。初始水平速度正相关于碎屑的最远运动距离,而负相关于质心运移距离。落石的初始滚动角速度则不仅负相关于碎屑的最远运动距离,也负相关于质心运移距离;(2)不同初始运动状态对落石碎屑粒径分布的影响主要体现于数据密度较稀疏的中大粒度碎屑,而小粒度碎屑的粒径分布差异性并不明显;(3)落石初始水平速度的提高会加剧落石的破碎解体程度,减小碎屑粒径范围,增强分选性;相反初始滚动角速度的提高则会在一定程度上抑制落石破碎解体程度,增大碎屑粒径范围,减弱分选性。研究成果可为落石潜在致灾范围的预测及落石防护设计提供参考。
Abstract:High-altitude rockfalls typically exhibit significant falling heights and high potential energy, resulting in pronounced dynamic fragmentation effects during motion. As such, determining the disaster range of high-altitude rockfalls remains a key challenge in disaster prevention and mitigation research. This study systematically examines how the initial motion states of falling rocks influence migration distance and dynamic fragmentation after impacting the slope. The motion states are decomposed into translational and rotational forms. A series of discrete element method (DEM) simulations were conducted under varying initial motion states to analyze the resulting particle migration distances and fragmentation levels. The results show that initial motion states significantly affect the degree of rock fragmentation and consequently, the migration behavior of rockfall debris. Specifically, an increase in initial horizontal velocity is positively correlated with the maximum migration distance of fragments but negatively correlated with the centroid migration distance. In contract, higher initial angular velocity shows a negative correlated with both maximum and centroid migration distances. Variations in initial motion states primarily affect the distribution of medium- to large-sized fragments, while the differences in fine particle distributions are less pronounced. Furthurmore, increasing initial horizontal velocity promotes more severe rock fragmentation, resulting in a narrower particle size distribution and improving sorting. Conversely, greater initial angular velocity inhibits rock fragmentation, producing a broader particle size range and reduced sorting performance. These findings provide valuable insights for predicting the potential hazard zones of rockfalls and supporting the design of effective protective measures.
-
-
表 1 合成岩石试样(SRMS)微观参数
Table 1. Micromechanical parameters of the synthetic rock mass specimen
关键材料参数 值 关键材料参数 值 颗粒粒径( $ d $ )/m0.002~0.003 胶结有效模量( $ {E}_{b}^{*} $ )/(N·m−2)1.21E+10 颗粒集合体密度( $ \rho $ )/(kg·m−3)2 200 胶结刚度比( $ {\kappa }_{b}^{*} $ )1.5 颗粒有效模量( $ {E}^{*} $ )/(N·m−2)7E+9 胶结抗拉强度(pb_ten)/(N·m−2) 8.1E+8 刚度比( $ {\kappa }^{*} $ )1.5 胶结黏聚力(pb_coh)/(N·m−2) 4.6E+8 摩擦系数 0.577 胶结内摩擦角(pb_fa)/(°) 39.8 表 2 对照试验组设置情况
Table 2. Experimental setup of control groups
工况 试验组 $ {v}_{x} $ /(m·s−1)$ {\omega }_{x} $ /(rad·s−1)1 SWC 0.5 0 2 CG1 1 0 3 CG1 1.5 0 4 CG1 2 0 5 CG2 0.5 10 6 CG2 0.5 20 7 CG2 0.5 30 -
[1] 胡厚田. 崩塌与落石[M]. 北京:中国铁道出版社,1989. [HU Houtian. Collapse and falling rocks[M]. Beijing:China Railway Publishing House,1989. (in Chinese)]
HU Houtian. Collapse and falling rocks[M]. Beijing: China Railway Publishing House, 1989. (in Chinese)
[2] DORREN L K A. A review of rockfall mechanics and modelling approaches[J]. Progress in Physical Geography:Earth and Environment,2003,27(1):69 − 87. doi: 10.1191/0309133303pp359ra
[3] VOLKWEIN A,SCHELLENBERG K,LABIOUSE V,et al. Rockfall characterisation and structural protection–a review[J]. Natural Hazards and Earth System Sciences,2011,11(9):2617 − 2651. doi: 10.5194/nhess-11-2617-2011
[4] PATTON F D,HENDRON A J. General report on mass movements[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13(2):A19.
[5] Hungr O,Evans S G. Engineering evaluation of fragmental rockfall hazards [C] //International symposium on landslides. 1988:685-690.
[6] Giani G P. Rock slope stability analysis [M]. CRC Press,1992.
[7] CHEN Hongey,CHEN Rongher,HUANG Tsanhwei. An application of an analytical model to a slope subject to rockfalls[J]. Environmental & Engineering Geoscience,1994,xxxi(4):447 − 458.
[8] HUANG Runqiu. Some catastrophic landslides since the twentieth century in the southwest of China[J]. Landslides,2009,6(1):69 − 81. doi: 10.1007/s10346-009-0142-y
[9] XU Qiang,FAN Xuanmei,HUANG Runqiu,et al. Landslide dams triggered by the Wenchuan Earthquake,Sichuan Province,south West China[J]. Bulletin of Engineering Geology and the Environment,2009,68(3):373 − 386. doi: 10.1007/s10064-009-0214-1
[10] YIN Yueping,WANG Fawu,SUN Ping. Landslide hazards triggered by the 2008 Wenchuan earthquake,Sichuan,China[J]. Landslides,2009,6(2):139 − 152. doi: 10.1007/s10346-009-0148-5
[11] XU Qiang,FAN Xuanmei,HUANG Runqiu,et al. A catastrophic rockslide-debris flow in Wulong,Chongqing,China in 2009:Background,characterization,and causes[J]. Landslides,2010,7(1):75 − 87. doi: 10.1007/s10346-009-0179-y
[12] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)]
WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)
[13] GILI J A,RUIZ-CARULLA R,MATAS G,et al. Rockfalls:Analysis of the block fragmentation through field experiments[J]. Landslides,2022,19(5):1009 − 1029. doi: 10.1007/s10346-021-01837-9
[14] ZHAO Tao,CROSTA G B,UTILI S,et al. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses[J]. Journal of Geophysical Research:Earth Surface,2017,122(3):678 − 695. doi: 10.1002/2016JF004060
[15] PERINOTTO H,SCHNEIDER J L,BACHÈLERY P,et al. The extreme mobility of debris avalanches:A new model of transport mechanism[J]. Journal of Geophysical Research:Solid Earth,2015,120(12):8110 − 8119. doi: 10.1002/2015JB011994
[16] CAGNOLI B,ROMANO G P. Effect of grain size on mobility of dry granular flows of angular rock fragments:An experimental determination[J]. Journal of Volcanology and Geothermal Research,2010,193(1/2):18 − 24.
[17] HAUG Ø T,ROSENAU M,LEEVER K,et al. On the energy budgets of fragmenting rockfalls and rockslides:Insights from experiments[J]. Journal of Geophysical Research:Earth Surface,2016,121(7):1310 − 1327. doi: 10.1002/2014JF003406
[18] 刘丹,叶四桥,杨威. 落石水平运动距离影响因素的模型试验研究[J]. 水文地质工程地质,2013,40(6):112 − 116. [LIU Dan,YE Siqiao,YANG Wei. Model test study of influence factors of horizontal movement of rockfalls[J]. Hydrogeology & Engineering Geology,2013,40(6):112 − 116. (in Chinese with English abstract)]
LIU Dan, YE Siqiao, YANG Wei. Model test study of influence factors of horizontal movement of rockfalls[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 112 − 116. (in Chinese with English abstract)
[19] 叶四桥,陈洪凯,许江. 落石运动模式与运动特征现场试验研究[J]. 土木建筑与环境工程,2011,33(2):18-23. [YE Siqiao,CHEN Hongkai,XU Jiang. Rockfalls movement mode and movement features by field tests[J]. Journal of Civil,Architectural & Environmental Engineering,2011,33(2):18-23. (in Chinese with English abstract)]
YE Siqiao, CHEN Hongkai, XU Jiang. Rockfalls movement mode and movement features by field tests[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(2): 18-23. (in Chinese with English abstract)
[20] MOLLON G,RICHEFEU V,VILLARD P,et al. Discrete modelling of rock avalanches:Sensitivity to block and slope geometries[J]. Granular Matter,2015,17(5):645 − 666. doi: 10.1007/s10035-015-0586-9
[21] NAGENDRAN S K,ISMAIL M A M. Analysis of rockfall hazards based on the effect of rock size and shape[J]. International Journal of Civil Engineering,2019,17(12):1919 − 1929. doi: 10.1007/s40999-019-00418-1
[22] 沈位刚,赵涛,戴峰,等. 基于离散元方法的落石碰撞破碎研究[C]//2016年全国工程地质学术年会论文集. 成都,2016:1064 − 1070. [SHEN Weigang, ZHAO Tao, DAI Feng, et al. Investigation of rockfall impact fragmentation based on the DEM[C]//Beijing :Science Press, 2016: 7. (in Chinese with English abstract)]
SHEN Weigang, ZHAO Tao, DAI Feng, et al. Investigation of rockfall impact fragmentation based on the DEM[C]//Beijing :Science Press, 2016: 7. (in Chinese with English abstract)
[23] 向欣. 边坡落石运动特性及碰撞冲击作用研究[D]. 武汉:中国地质大学,2010. [XIANG Xin. Research on motion characteristics and impact force of rockfall[D]. Wuhan:China University of Geosciences,2010. (in Chinese with English abstract)]
XIANG Xin. Research on motion characteristics and impact force of rockfall[D]. Wuhan: China University of Geosciences, 2010. (in Chinese with English abstract)
[24] LIN Qiwen,CHENG Qiangong,LI Kun,et al. Contributions of rock mass structure to the emplacement of fragmenting rockfalls and rockslides:Insights from laboratory experiments[J]. Journal of Geophysical Research:Solid Earth,2020,125(4):e2019JB019296. doi: 10.1029/2019JB019296
[25] MA Ke,LIU Guoyang,XU Nuwen,et al. Motion characteristics of rockfall by combining field experiments and 3D discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104591. doi: 10.1016/j.ijrmms.2020.104591
[26] 刘世涛. 落石碎屑化运动与堆积特征研究[D]. 成都:西南交通大学,2021. [LIU Shitao. Study on characteristics of rockfall movement and deposition fragmentating-related. Chengdu:Southwest Jiaotong University,2021. (in Chinese with English abstract)]
LIU Shitao. Study on characteristics of rockfall movement and deposition fragmentating-related. Chengdu: Southwest Jiaotong University, 2021. (in Chinese with English abstract)
[27] ZHAO Tao,CROSTA G B. On the dynamic fragmentation and lubrication of coseismic landslides[J]. Journal of Geophysical Research:Solid Earth,2018,123(11):9914 − 9932. doi: 10.1029/2018JB016378
[28] AZZONI A,BARBERA G L,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):709 − 724.
[29] 黄润秋,刘卫华. 平台对滚石停积作用试验研究[J]. 岩石力学与工程学报,2009,28(3):516 − 524. [HUANG Runqiu,LIU Weihua. Platform resistent test on rolling rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(3):516 − 524. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2009.03.010
HUANG Runqiu, LIU Weihua. Platform resistent test on rolling rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 516 − 524. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.03.010
[30] DORREN L K A,BERGER F,PUTTERS U S. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes[J]. Natural Hazards and Earth System Sciences,2006,6(1):145 − 153. doi: 10.5194/nhess-6-145-2006
[31] 万志文. 崩塌落石沿直线型斜面的运动特征室内试验研究[D]. 成都:成都理工大学,2017. [WAN Zhiwen. Experimental study on the movement characteristics of collapsing falling stone along linear straight. Chengdu:Chengdu University of Technology,2017. (in Chinese with English abstract)]
WAN Zhiwen. Experimental study on the movement characteristics of collapsing falling stone along linear straight. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)
[32] LI Langping,LAN Hengxing. Probabilistic modeling of rockfall trajectories:A review[J]. Bulletin of Engineering Geology and the Environment,2015,74(4):1163 − 1176. doi: 10.1007/s10064-015-0718-9
[33] Itasca. Particle Flow Code,PFC3D,Release 2.0[J]. Itasca Consulting Group Inc,1999.
[34] MANZELLA I,LABIOUSE V. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides,2013,10(1):23 − 36. doi: 10.1007/s10346-011-0313-5
[35] LONGCHAMP C,ABELLAN A,JABOYEDOFF M,et al. 3-D models and structural analysis of rock avalanches:The study of the deformation process to better understand the propagation mechanism[J]. Earth Surface Dynamics,2016,4(3):743 − 755. doi: 10.5194/esurf-4-743-2016
[36] LI Kun,WANG Yufeng,LIN Qiwen,et al. Experiments on granular flow behavior and deposit characteristics:Implications for rock avalanche kinematics[J]. Landslides,2021,18(5):1779 − 1799. doi: 10.1007/s10346-020-01607-z
[37] 姬中民,张晟,伍法权,等. 落石法向恢复系数的多因素联合影响研究[J]. 水文地质工程地质,2022,49(2):164 − 173. [JI Zhongmin,ZHANG Sheng,WU Faquan,et al. Research on the joint influence of multiple factors on the normal coefficient of restitution of rockfall[J]. Hydrogeology & Engineering Geology,2022,49(2):164 − 173. (in Chinese with English abstract)]
JI Zhongmin, ZHANG Sheng, WU Faquan, et al. Research on the joint influence of multiple factors on the normal coefficient of restitution of rockfall[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 164 − 173. (in Chinese with English abstract)
[38] 郭亮,李婧铷,王保权,等. 震后崩塌堆石体稳定性室内试验研究[J]. 自然灾害学报,2020,29(5):182 − 190. [GUO Liang,LI Jingru,WANG Baoquan,et al. Laboratory test of stability of post-earthquake collapse rockfill[J]. Journal of Natural Disasters,2020,29(5):182 − 190. (in Chinese with English abstract)]
GUO Liang, LI Jingru, WANG Baoquan, et al. Laboratory test of stability of post-earthquake collapse rockfill[J]. Journal of Natural Disasters, 2020, 29(5): 182 − 190. (in Chinese with English abstract)
[39] LUO Hao,XING Aiguo,JIN Kaiping,et al. Discrete element modeling of the Nayong rock avalanche,Guizhou,China constrained by dynamic parameters from seismic signal inversion[J]. Rock Mechanics and Rock Engineering,2021,54(4):1629 − 1645. doi: 10.1007/s00603-021-02363-9
[40] GAO Ge,MEGUID M A,CHOUINARD L E,et al. Insights into the transport and fragmentation characteristics of earthquake-induced rock avalanche:Numerical study[J]. International Journal of Geomechanics,2020,20(9):04020157. doi: 10.1061/(ASCE)GM.1943-5622.0001800
[41] 孔祥曌,李滨,贺凯,等. 柱状岩体崩塌动力特征与破碎规律——以重庆甑子岩崩塌为例[J]. 中国地质灾害与防治学报,2022,33(5):1 − 10. [KONG Xiangzhao,LI Bin,HE Kai,et al. Dynamic characteristics and fragmentation evolution of columnar rockfall:A case study of the Zengziyan rockfall in Chongqing,China[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):1 − 10. (in Chinese with English abstract)]
KONG Xiangzhao, LI Bin, HE Kai, et al. Dynamic characteristics and fragmentation evolution of columnar rockfall: A case study of the Zengziyan rockfall in Chongqing, China[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 1 − 10. (in Chinese with English abstract)
[42] PALUSZNY A,TANG Xuhai,NEJATI M,et al. A direct fragmentation method with Weibull function distribution of sizes based on finite- and discrete element simulations[J]. International Journal of Solids and Structures,2016,80:38 − 51. doi: 10.1016/j.ijsolstr.2015.10.019
[43] CHEONG Y S,REYNOLDS G K,SALMAN A D,et al. Modelling fragment size distribution using two-parameter Weibull equation[J]. International Journal of Mineral Processing,2004,74:S227 − S237. doi: 10.1016/j.minpro.2004.07.012
[44] PALUSZNY A,TANG X H,ZIMMERMAN R W. Fracture and impulse based finite-discrete element modeling of fragmentation[J]. Computational Mechanics,2013,52(5):1071 − 1084. doi: 10.1007/s00466-013-0864-5
[45] McSaveney M J. Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand[J]. Geological Society of America, Review in Engineering Geology,2002,15:35 − 70.
[46] MA Gang,ZHOU Wei,REGUEIRO R A,et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology,2017,308:388 − 397. doi: 10.1016/j.powtec.2016.11.046
[47] SALMAN A D,HOUNSLOW M J,VERBA A. Particle fragmentation in dilute phase pneumatic conveying[J]. Powder Technology,2002,126(2):109 − 115. doi: 10.1016/S0032-5910(02)00048-7
[48] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics,1951,18:293 − 297. doi: 10.1115/1.4010337
[49] CARMONA H A,WITTEL F K,KUN F,et al. Fragmentation processes in impact of spheres[J]. Physical Review E,2008,77(5):051302. doi: 10.1103/PhysRevE.77.051302
[50] Turcotte D L. Fractals and fragmentation[J]. Journal of Geophysical Research:Solid Earth,1986,91(B2):1921 doi: 10.1029/JB091iB02p01921
-