中国地质环境监测院
中国地质灾害防治工程行业协会
主办

浸水作用下泥岩膨胀特性及其关键界面响应机制

张功基, 李长冬, 孟杰, 张子涵, 黄德崴. 浸水作用下泥岩膨胀特性及其关键界面响应机制[J]. 中国地质灾害与防治学报, 2025, 36(4): 15-25. doi: 10.16031/j.cnki.issn.1003-8035.202406013
引用本文: 张功基, 李长冬, 孟杰, 张子涵, 黄德崴. 浸水作用下泥岩膨胀特性及其关键界面响应机制[J]. 中国地质灾害与防治学报, 2025, 36(4): 15-25. doi: 10.16031/j.cnki.issn.1003-8035.202406013
ZHANG Gongji, LI Changdong, MENG Jie, ZHANG Zihan, HUANG Dewei. Mudstone swelling characteristics and key interface response under water immersion[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(4): 15-25. doi: 10.16031/j.cnki.issn.1003-8035.202406013
Citation: ZHANG Gongji, LI Changdong, MENG Jie, ZHANG Zihan, HUANG Dewei. Mudstone swelling characteristics and key interface response under water immersion[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(4): 15-25. doi: 10.16031/j.cnki.issn.1003-8035.202406013

浸水作用下泥岩膨胀特性及其关键界面响应机制

  • 基金项目: 国家自然科学基金重大项目(42090054);湖北省自然科学基金创新群体项目(2022CFA002)
详细信息
    作者简介: 张功基(2001—),男,江西赣州人,地质工程专业,硕士研究生,研究方向为岩体多尺度演化研究。E-mail:zhanggongji@cug.edu.cn
    通讯作者: 李长冬(1981—),男,湖北云梦人,岩土工程专业,博士,教授,博士生导师,从事地质灾害演化机理与防治研究。E-mail:lichangdong@cug.edu.cn
  • 中图分类号: P588.22

Mudstone swelling characteristics and key interface response under water immersion

More Information
  • 富黏土矿物泥岩在遇水后的膨胀性是诱发多种地质灾害的关键因素之一。然而,当前对黏土矿物在泥岩膨胀过程中的微观与宏观响应机制,特别是涉及分子尺度界面作用的深入探讨仍然不足。文章采用盐离子作为“探针”,结合试验与分子动力学模拟,探究了浸水作用下关键界面在泥岩膨胀过程中的控制作用。结果表明:泥岩内部裂隙的大量产生是其发生膨胀变形的主要原因,添加盐离子后泥岩的膨胀与吸水受到相近的抑制作用;分子层面上,模拟表明盐离子抑制了蒙脱石水化过程中的层间扩展,指示了蒙脱石对泥岩膨胀的关键影响;而伊利石因其层间强相互作用与边界氢键网络形成而难以发生水化膨胀。进一步基于界面作用阐明了泥岩膨胀变形的2种界面响应机制:其一为蒙脱石分子内层间界面水化,在致密的团聚体中发生结晶膨胀而产生结构裂隙;其二为分子间微孔、裂隙界面浸润,导致泥岩内空气压缩而造成原生裂隙扩展与裂隙网络形成。研究结果可为进一步深入理解涉水泥岩地层的灾变过程提供依据。

  • 加载中
  • 图 1  研究区域与部分泥岩样品

    Figure 1. 

    图 2  泥岩矿物组成情况

    Figure 2. 

    图 3  蒙脱石与伊利石分子结构模型

    Figure 3. 

    图 4  单次膨胀模拟具体过程

    Figure 4. 

    图 5  浸泡在不同溶液中泥岩的膨胀曲线

    Figure 5. 

    图 6  浸水作用下泥岩内部产生的裂隙

    Figure 6. 

    图 7  泥岩毛细吸水曲线

    Figure 7. 

    图 8  蒙脱石与伊利石在结晶膨胀过程中基底间距变化

    Figure 8. 

    图 9  伊利石层间吸水模拟

    Figure 9. 

    图 10  泥岩膨胀的微宏观响应机理

    Figure 10. 

    表 1  岩样基础物理指标

    Table 1.  Basic physical indices of rock samples

    指标 天然密度/(g·cm−3 干密度/(g·cm−3 天然含水量/% 孔隙率/%
    取样参数值 2.611 2.546 2.581 3.604
    下载: 导出CSV

    表 2  膨胀模拟设定

    Table 2.  Settings for expansion simulation

    0 wt%NaCl/分子个数 相对原子质量 5 wt%NaCl/分子个数 相对原子质量
    蒙脱石单次130H2O2340.0124H2O + 2NaCl2349.0
    共计780H2O14040.0744H2O + 12NaCl14094.0
    伊利石共计65H2O1170.062H2O + 1NaCl1174.5
    共计390H2O7020.0372H2O + 6NaCl7047.0
    下载: 导出CSV

    表 3  力场参数[43, 45]

    Table 3.  Force field parameters

    物质 原子/离子 间距/Å 能量/(kcal·mol−1 电荷/e
    矿物
    分子
    桥联O 3.553 2 0.155 4 −1.050 0
    羟基O 3.553 2 0.155 4 −0.950 0
    有八面体取代的桥联O 3.553 2 0.155 4 −1.180 8
    有四面体取代的桥联O 3.553 2 0.155 4 −1.168 8
    有取代的羟基O 3.553 2 0.155 4 −1.080 8
    羟基H 0.000 0 0.000 0 0.425 0
    四面体Si 3.706 4 1.840 5×10−6 2.100 0
    四面体Al 3.706 4 1.840 5×10−6 1.575 0
    八面体Al 4.794 3 1.329 8×10−6 1.575 0
    八面体Mg 5.909 0 9.029 8×10−7 1.360 0
    Na 2.637 8 0.130 1 1.000 0
    K 3.742 3 0.100 0 1.000 0
    水分子 O 3.553 2 0.155 4 −0.820 0
    H 0.000 0 0.000 0 0.410 0
    下载: 导出CSV

    表 4  泥岩裂隙网络参数

    Table 4.  Parameters of the mudstone crack network

    分形维数 裂隙体积总和/mm3
    0% 5% 0% 5%
    0 min 1.435 1.459 0.039 0.122
    30 min 2.372 2.131 25.085 6.740
    240 min 2.440 2.305 52.890 24.105
    下载: 导出CSV
  • [1]

    丁瑜,周忠浩,吴立新,等. 重庆地区红层泥岩球状风化剥落特征及其形成机制[J]. 中国地质灾害与防治学报,2015,26(1):108 − 112. [DING Yu,ZHOU Zhonghao,WU Lixin,et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):108 − 112. (in Chinese with English abstract)]

    DING Yu, ZHOU Zhonghao, WU Lixin, et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 108 − 112. (in Chinese with English abstract)

    [2]

    丁秀丽,赵化蒙,黄书岭. 基于吸湿–膨胀分析模型的岩石膨胀变形演化规律研究[J]. 岩石力学与工程学报,2021,40(增刊2):3005 − 3013. [DING Xiuli,ZHAO Huameng,HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3005 − 3013. (in Chinese with English abstract)]

    DING Xiuli, ZHAO Huameng, HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3005 − 3013. (in Chinese with English abstract)

    [3]

    丁秀丽,樊炫廷,黄书岭,等. 考虑水化和膨胀作用的泥岩统计损伤模型及验证[J]. 岩石力学与工程学报,2023,42(11):2601 − 2612. [DING Xiuli,FAN Xuanting,HUANG Shuling,et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2601 − 2612. (in Chinese with English abstract)]

    DING Xiuli, FAN Xuanting, HUANG Shuling, et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2601 − 2612. (in Chinese with English abstract)

    [4]

    程树范,曾亚武,高睿,等. 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学,2023,44(增刊1):332 − 340. [CHENG Shufan,ZENG Yawu,GAO Rui,et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics,2023,44(Sup 1):332 − 340. (in Chinese with English abstract)]

    CHENG Shufan, ZENG Yawu, GAO Rui, et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 332 − 340. (in Chinese with English abstract)

    [5]

    唐雅婷,谭杰,李长冬,等. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探[J]. 地质科技通报,2022,41(6):137 − 148. [TANG Yating,TAN Jie,LI Changdong,et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology,2022,41(6):137 − 148. (in Chinese with English abstract)]

    TANG Yating, TAN Jie, LI Changdong, et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137 − 148. (in Chinese with English abstract)

    [6]

    王溢禧,赵俊彦,朱兴华,等. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析[J]. 中国地质灾害与防治学报,2024,35(6):1 − 14. [WANG Yixi,ZHAO Junyan,ZHU Xinghua,et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide,Guide Basin[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6):1 − 14. (in Chinese with English abstract)]

    WANG Yixi, ZHAO Junyan, ZHU Xinghua, et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 1 − 14. (in Chinese with English abstract)

    [7]

    谭银龙,许万忠,曹家菊,等. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析[J]. 水文地质工程地质,2023,50(1):113 − 121. [TAN Yinlong,XU Wanzhong,CAO Jiaju,et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology,2023,50(1):113 − 121. (in Chinese with English abstract)]

    TAN Yinlong, XU Wanzhong, CAO Jiaju, et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 113 − 121. (in Chinese with English abstract)

    [8]

    魏正发,张俊才,曹小岩,等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报,2021,32(4):47 − 55. [WEI Zhengfa,ZHANG Juncai,CAO Xiaoyan,et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City,Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):47 − 55. (in Chinese with English abstract)]

    WEI Zhengfa, ZHANG Juncai, CAO Xiaoyan, et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City, Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 47 − 55. (in Chinese with English abstract)

    [9]

    谢洪波,刘正疆,文广超,等. 四川金川-小金公路沿线滑坡、崩塌影响因素分析[J]. 中国地质灾害与防治学报,2021,32(1):10 − 17. [XIE Hongbo,LIU Zhengjiang,WEN Guangchao,et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):10 − 17. (in Chinese with English abstract)]

    XIE Hongbo, LIU Zhengjiang, WEN Guangchao, et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 10 − 17. (in Chinese with English abstract)

    [10]

    吴凯,倪万魁,武鹏. 宁夏隆德县坡面型泥石流形成机理分析[J]. 中国地质灾害与防治学报,2016,27(1):49 − 54. [WU Kai,NI Wankui,WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde County of Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):49 − 54. (in Chinese with English abstract)]

    WU Kai, NI Wankui, WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde County of Ningxia[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1): 49 − 54. (in Chinese with English abstract)

    [11]

    李长冬,谭钦文. 动水驱动型滑坡物理启滑能够预测吗?[J]. 地球科学,2022,47(10):3908 − 3910. [LI Changdong,TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science,2022,47(10):3908 − 3910. (in Chinese with English abstract)]

    LI Changdong, TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science, 2022, 47(10): 3908 − 3910. (in Chinese with English abstract)

    [12]

    柴肇云,张鹏,郭俊庆,等. 泥质岩膨胀各向异性与循环胀缩特征[J]. 岩土力学,2014,35(2):346 − 350. [CHAI Zhaoyun,ZHANG Peng,GUO Junqing,et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics,2014,35(2):346 − 350. (in Chinese with English abstract)]

    CHAI Zhaoyun, ZHANG Peng, GUO Junqing, et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics, 2014, 35(2): 346 − 350. (in Chinese with English abstract)

    [13]

    赵建磊,王涛,梁昌玉,等. 基于风化红层泥岩蠕变特性的滑坡时效变形分析——以天水雒堡村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):30 − 39. [ZHAO Jianlei,WANG Tao,LIANG Changyu,et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone:A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):30 − 39. (in Chinese with English abstract)]

    ZHAO Jianlei, WANG Tao, LIANG Changyu, et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone: A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 30 − 39. (in Chinese with English abstract)

    [14]

    郭永春,赵峰先,闫圣龙,等. 红层泥岩三轴膨胀力的试验研究[J]. 水文地质工程地质,2022,49(3):87 − 93. [GUO Yongchun,ZHAO Fengxian,YAN Shenglong,et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology,2022,49(3):87 − 93. (in Chinese with English abstract)]

    GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87 − 93. (in Chinese with English abstract)

    [15]

    叶朝良,薛飞招,谢玉芳,等. 炭质泥岩工程力学特性试验研究[J]. 铁道工程学报,2019,36(11):1 − 6. [YE Chaoliang,XUE Feizhao,XIE Yufang,et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society,2019,36(11):1 − 6. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2106.2019.11.001

    YE Chaoliang, XUE Feizhao, XIE Yufang, et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society, 2019, 36(11): 1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2019.11.001

    [16]

    LIU Changdong,CHENG Yi,JIAO Yuyong,et al. Experimental study on the effect of water on mechanical properties of swelling mudstone[J]. Engineering Geology,2021,295:106448. doi: 10.1016/j.enggeo.2021.106448

    [17]

    谭罗荣. 关于粘土岩崩解、泥化机理的讨论[J]. 岩土力学,2001,22(1):1 − 5. [TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics,2001,22(1):1 − 5. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2001.01.001

    TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 2001, 22(1): 1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2001.01.001

    [18]

    苏永华,赵明华,刘晓明. 软岩膨胀崩解试验及分形机理[J]. 岩土力学,2005,26(5):728 − 732. [SU Yonghua,ZHAO Minghua,LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics,2005,26(5):728 − 732. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2005.05.010

    SU Yonghua, ZHAO Minghua, LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics, 2005, 26(5): 728 − 732. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2005.05.010

    [19]

    JIANG Quan,CUI Jie,FENG Xiating,et al. Application of computerized tomographic scanning to the study of water-induced weakening of mudstone[J]. Bulletin of Engineering Geology and the Environment,2014,73(4):1293 − 1301. doi: 10.1007/s10064-014-0597-5

    [20]

    孙怡,邓荣贵,文琪鑫,等. 红层泥质岩循环干湿风化下变形特性试验研究[J]. 铁道科学与工程学报,2020,17(1):57 − 65. [SUN Yi,DENG Ronggui,WEN Qixin,et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering,2020,17(1):57 − 65. (in Chinese with English abstract)]

    SUN Yi, DENG Ronggui, WEN Qixin, et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering, 2020, 17(1): 57 − 65. (in Chinese with English abstract)

    [21]

    GENG Jishi,SUN Qiang,LI Houen,et al. Deterioration of mudstone exposed to cyclic hygrothermal conditions based on thermoacoustic emission[J]. Construction and Building Materials,2023,386:131581. doi: 10.1016/j.conbuildmat.2023.131581

    [22]

    柴肇云,张亚涛,张学尧. 泥岩耐崩解性与矿物组成相关性的试验研究[J]. 煤炭学报,2015,40(5):1188 − 1193. [CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188 − 1193. (in Chinese with English abstract)]

    CHAI Zhaoyun, ZHANG Yatao, ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society, 2015, 40(5): 1188 − 1193. (in Chinese with English abstract)

    [23]

    张娜,王水兵,严成钢,等. 基于核磁共振技术的泥岩水化损伤孔隙结构演化试验[J]. 煤炭学报,2019,44(增刊1):110 − 117. [ZHANG Na,WANG Shuibing,YAN Chenggang,et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society,2019,44(Sup 1):110 − 117. (in Chinese with English abstract)]

    ZHANG Na, WANG Shuibing, YAN Chenggang, et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society, 2019, 44(Sup 1): 110 − 117. (in Chinese with English abstract)

    [24]

    戴张俊,郭建华,周哲,等. 川中红层高铁路基长时上拱变形反演与预测[J]. 岩石力学与工程学报,2020,39(增刊2):3538 − 3548. [DAI Zhangjun,GUO Jianhua,ZHOU Zhe,et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3538 − 3548. (in Chinese with English abstract)]

    DAI Zhangjun, GUO Jianhua, ZHOU Zhe, et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3538 − 3548. (in Chinese with English abstract)

    [25]

    东南大学,浙江大学,南京工业大学,等. 土力学[M]. 北京:中国电力出版社,2010. [Southeast University, Zhejiang University, Nanjing Tech University, et al. Soil mechanics[M]. Beijing:China Electric Power Press,2010. (in Chinese)]

    Southeast University, Zhejiang University, Nanjing Tech University, et al. Soil mechanics[M]. Beijing: China Electric Power Press, 2010. (in Chinese)

    [26]

    刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81 − 89. [LIU Meiquan,PU Xiaolin,ZHANG Qian,et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(4):81 − 89. (in Chinese with English abstract)]

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 81 − 89. (in Chinese with English abstract)

    [27]

    冯高顺,余飞,戴张俊,等. 川中红层泥岩吸水膨胀时效特征的试验研究[J]. 岩石力学与工程学报,2022,41(增刊1):2780 − 2790. [FENG Gaoshun,YU Fei,DAI Zhangjun,et al. Experimental study on time effect characteristics of red mudstone swelling in central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 1):2780 − 2790. (in Chinese with English abstract)]

    FENG Gaoshun, YU Fei, DAI Zhangjun, et al. Experimental study on time effect characteristics of red mudstone swelling in central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 1): 2780 − 2790. (in Chinese with English abstract)

    [28]

    李长冬,孟杰,项林语,等. 白鹤滩库首区砂岩结构多尺度演变机制[J]. 地球科学,2023,48(12):4658 − 4667. [LI Changdong,MENG Jie,XIANG Linyu,et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science,2023,48(12):4658 − 4667. (in Chinese with English abstract)]

    LI Changdong, MENG Jie, XIANG Linyu, et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science, 2023, 48(12): 4658 − 4667. (in Chinese with English abstract)

    [29]

    ZHANG Zhenhua,CUI Wentian,LIU Zhidan,et al. Study on the cracking mechanism of strongly weathered purple mudstone under wetting and drying effect through experiments and molecular dynamics simulation[J]. Construction and Building Materials,2023,403:133104. doi: 10.1016/j.conbuildmat.2023.133104

    [30]

    黄宏伟,车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版),2007,35(7):866 − 870. [HUANG Hongwei,CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science),2007,35(7):866 − 870. (in Chinese with English abstract)]

    HUANG Hongwei, CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7): 866 − 870. (in Chinese with English abstract)

    [31]

    张永安,李峰,陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报,2008,16(1):22 − 26. [ZHANG Yongan,LI Feng,CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology,2008,16(1):22 − 26. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2008.01.005

    ZHANG Yongan, LI Feng, CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 2008, 16(1): 22 − 26. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.01.005

    [32]

    谢小帅,陈华松,肖欣宏,等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报,2019,27(5):966 − 972. [XIE Xiaoshuai,CHEN Huasong,XIAO Xinhong,et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology,2019,27(5):966 − 972. (in Chinese with English abstract)]

    XIE Xiaoshuai, CHEN Huasong, XIAO Xinhong, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966 − 972. (in Chinese with English abstract)

    [33]

    刘凤云,谢飞,邱恩喜,等. 川西红层软岩崩解演变特征与微观响应机理试验研究[J]. 工程地质学报,2022,30(5):1597 − 1608. [LIU Fengyun,XIE Fei,QIU Enxi,et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology,2022,30(5):1597 − 1608. (in Chinese with English abstract)]

    LIU Fengyun, XIE Fei, QIU Enxi, et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology, 2022, 30(5): 1597 − 1608. (in Chinese with English abstract)

    [34]

    WU Qiong,LIU Yuxin,TANG Huiming,et al. Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area[J]. Engineering Geology,2023,314:107013. doi: 10.1016/j.enggeo.2023.107013

    [35]

    唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,LI Changdong,GONG Wenping,et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)]

    TANG Huiming, LI Changdong, GONG Wenping, et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)

    [36]

    孟杰,李长冬,闫盛熠,等. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究[J]. 地质科技通报,2023,42(1):20 − 28. [MENG Jie,LI Changdong,YAN Shengyi,et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology,2023,42(1):20 − 28. (in Chinese with English abstract)]

    MENG Jie, LI Changdong, YAN Shengyi, et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 20 − 28. (in Chinese with English abstract)

    [37]

    王春虹,李明慧,方小敏,等. 柴达木盆地西部SG-1钻孔中伊蒙混层结构特征及环境意义[J]. 第四纪研究,2016,36(4):917 − 925. [WANG Chunhong,LI Minghui,FANG Xiaomin,et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the SG-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences,2016,36(4):917 − 925. (in Chinese with English abstract)] doi: 10.11928/j.issn.1001-7410.2016.04.12

    WANG Chunhong, LI Minghui, FANG Xiaomin, et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the SG-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences, 2016, 36(4): 917 − 925. (in Chinese with English abstract) doi: 10.11928/j.issn.1001-7410.2016.04.12

    [38]

    RAHROMOSTAQIM M,SAHIMI M. Molecular dynamics simulation of hydration and swelling of mixed-layer clays[J]. The Journal of Physical Chemistry C,2018,122(26):14631 − 14639. doi: 10.1021/acs.jpcc.8b03693

    [39]

    GHASEMI M,SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays:A molecular dynamics simulation study[J]. Journal of Molecular Liquids,2021,335:116188. doi: 10.1016/j.molliq.2021.116188

    [40]

    魏然,张丽雅,肖智睿,等. 基于MICP技术的膨胀土变形控制机理研究[J]. 岩土工程学报,2023,45(增刊1):92 − 96. [WEI Ran,ZHANG Liya,XIAO Zhirui,et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering,2023,45(Sup 1):92 − 96. (in Chinese with English abstract)]

    WEI Ran, ZHANG Liya, XIAO Zhirui, et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(Sup 1): 92 − 96. (in Chinese with English abstract)

    [41]

    SKIPPER N T,SPOSITO G,CHANG F C. Monte carlo simulation of interlayer molecular structure in swelling clay minerals. 2. monolayer hydrates[J]. Clays and Clay Minerals,1995,43(3):294 − 303. doi: 10.1346/CCMN.1995.0430304

    [42]

    DRITS V A,ZVIAGINA B B,MCCARTY D K,et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist,2010,95(2/3):348 − 361.

    [43]

    CYGAN R T,LIANG Jianjie,KALINICHEV A G. Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B,2004,108(4):1255 − 1266. doi: 10.1021/jp0363287

    [44]

    杨微,陈仁朋,康馨. 基于分子动力学模拟技术的黏土矿物微观行为研究应用[J]. 岩土工程学报,2019,41(增刊1):181 − 184. [YANG Wei,CHEN Renpeng,KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup 1):181 − 184. (in Chinese with English abstract)]

    YANG Wei, CHEN Renpeng, KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 181 − 184. (in Chinese with English abstract)

    [45]

    项林语,李长冬,李浩林,等. 基于分子动力学模拟的钙基蒙脱石表面润湿性研究[J]. 科学技术与工程,2022,22(36):15952 − 15958. [XIANG Linyu,LI Changdong,LI Haolin,et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering,2022,22(36):15952 − 15958. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2022.36.011

    XIANG Linyu, LI Changdong, LI Haolin, et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering, 2022, 22(36): 15952 − 15958. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2022.36.011

    [46]

    FALCONER K. Fractal geometry:mathematical foundations and applications[M]. Third edition. ©2014:John Wiley & Sons Inc. ,2014.

    [47]

    LIU Hailong,CAO Guoxin. Effectiveness of the young-Laplace equation at nanoscale[J]. Scientific Reports,2016(6):23936. doi: 10.1038/srep23936

  • 加载中

(10)

(4)

计量
  • 文章访问数:  94
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-06-11
修回日期:  2024-10-19
录用日期:  2025-01-09
刊出日期:  2025-08-25

目录