Re-evaluation on rockfall risk at tunnel entrances and exits during the construction phase of Yichang—Zhengwan high speed railway connection line
-
摘要:
新建宜昌至郑万高铁联络线穿越秦岭造山带大巴山弧形构造带东缘,新构造运动强烈,地层岩性纷杂,地形起伏大,隧道洞口边仰坡发育大量危岩体,对联络线施工和运营安全构成严重威胁。在勘察阶段初步评价的基础上,文章以35个初步评估筛选出的风险边坡为研究对象开展再评估。考虑施工临时防护措施的有效性,通过赤平投影分析和模糊数学层次分析法,筛选出2个高风险隧道。之后,利用基于GIS模型和概率模型的RocPro3D模拟软件对落石动力学特征开展了预测分析。结果表明:(1)魏家山隧道出口受落石冲击概率较低,老林岗隧道出口受落石冲击概率极高;(2)老林岗隧道危岩体直接冲击隧道洞口的概率为24.73%,最大冲击能量为
5649 kJ,最大速度为21.82 m/s,冲击点集中在隧道洞口右侧;(3)根据冲击概率、冲击能量、冲击速度、树林和地形等因素,亟须对危岩3区进行工程治理。研究成果可为郑万高铁联络线隧道危岩的有效防治提供参考。-
关键词:
- 危岩 /
- 失稳模式 /
- RocPro3D模拟 /
- 动力学特征 /
- 郑万高铁联络线
Abstract:The new Yichang—Zhengwan high speed railway connection line crosses the eastern edge of the Dabashan arc tectonic belt in the Qinling orogenic belt, with strong neotectonic movement, mixed stratigraphic lithology, large topographic relief, and a large number of perilous rocks developed on the upward slopes of tunnel entrances, which poses a serious threat to the safety of the construction and operation of the connection line. On the basis of the preliminary evaluation during the survey phase, this paper takes 35 risky slopes screened out in the preliminary evaluation as research objects to carry out re-evaluation. Considering the efficacy of temporary construction protective measures, we narrowed down two high risk tunnels using stereographic projection analysis and the fuzzy mathematical analytic hierarchy process. Subsequently, the predictive analysis was conducted to assess the dynamic characteristics of falling rocks by Rockpro3D simulation based on GIS and probability models. The results show that: (1) The exit of the Weijiashan tunnel has a low probability of being impacted by falling rocks, while the exit of the Laolingang tunnel has an extremely high probability of being impacted by falling rocks; (2) The probability of the perilous rock of Laolingang tunnel impacting directly on the tunnel opening is 24.73%, with the maximum impact energy of 6 693 kJ and the maximum speed of 26.2 m/s, and the impact points are concentrated in the right side of the tunnel entrance; (3) According to the factors of impact probability, impact energy, impact velocity, woods and topography, there is an urgent need for engineering management of perilous rock zone 3. The research results can provide reference for the effective prevention and control of perilous rocks in the tunnel of Zheng-Wan high speed railway connection line.
-
-
表 1 危岩落石严重性评价指标权重分级
Table 1. Classification of weights for severity evaluation indicators of perilous rocks
评价因子 权重 轻微 中等 严重 极严重 F1:不利结构面产状与坡面关系 0.1626 未发育结构面,或结构面倾向与坡向夹角>60°,结构面倾角<35° 结构面倾向与坡向夹角>40°且倾角>35° 结构面倾向与坡向
夹角<40°且倾角>35°结构面倾向与坡向夹角<20°且倾角>35° F2:危岩体体积/m3 0.1464 ≤50 50~100 100~500 ≥500 F3:危岩体与母岩分离程度 0.130 0 危岩体与母岩接触,裂隙不发育且张开度小 危岩体与母岩之间裂隙
发育一般,延伸不远危岩体与母岩之间裂隙较发育,裂隙张开程度较大且延伸较远 危岩体与母岩之间多组裂隙发育贯通,张开度大且延伸远 F4:节理发育程度和组合特征 0.1138 节理不发育 节理发育一般,组合较为不利 节理较发育,组合不利 节理极发育,组合极不利 F5:地层岩性组合 0.0976 软质岩为主的边坡 硬质岩边坡 软硬岩互层,或硬质岩为
主夹软质岩的边坡上部厚层硬质岩,下部软岩
或软弱夹层的边坡F6:日降雨量/mm 0.0895 ≤50 50~100 100~250 >250 F7:坡型 0.0813 台阶型 凹型 直线型 凸型 F8:坡高/m 0.0569 ≤20 20~50 50~100 ≥100 F9:坡度/(°) 0.0488 ≤20 20~40 40~60 ≥60 F10:植被覆盖率 0.0406 植被极发育且多为乔木 植被较发育且
大部分为乔木植被发育差,多为灌木 植被不发育,多为杂草 F11:地震烈度 0.0325 ≤4 4~6 6~8 ≥8 表 2 判断矩阵标度(重要性指标)及其含义
Table 2. Scale and meaning of judgment matrix (importance indexes)
标度值 含义 1 表示两个指标相比,具有同样重要性 3 表示两个指标相比,一个元素比另一个元素稍微重要 5 表示两个指标相比,一个元素比另一个元素明显重要 7 表示两个指标相比,一个元素比另一个元素强烈重要 9 表示两个指标相比,一个元素比另一个元素极端重要 2,4,6,8 2,4,6,8分别表示上述相邻判断1−3、3−5、5−7、7−9的中值 倒数 表示元素i与j比较的判断值aij,则元素j与i比较的判断值aji=1/aij 表 3 危岩落石自身严重性判别矩阵
Table 3. Self-severity discrimination matrix of rockfall
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F1 1.00 1.11 1.25 1.43 1.67 1.82 2.00 2.86 3.33 4.00 5.00 F2 0.90 1.00 1.13 1.29 1.50 1.64 1.80 2.57 3.00 3.60 4.50 F3 0.80 0.89 1.00 1.14 1.33 1.45 1.60 2.29 2.67 3.20 4.00 F4 0.70 0.78 0.88 1.00 1.17 1.27 1.40 2.00 2.33 2.80 3.50 F5 0.60 0.67 0.75 0.86 1.00 1.09 1.20 1.71 2.00 2.40 3.00 F6 0.55 0.61 0.69 0.79 0.92 1.00 1.10 1.57 1.83 2.20 2.75 F7 0.50 0.56 0.63 0.71 0.83 0.91 1.00 1.43 1.67 2.00 2.50 F8 0.35 0.39 0.44 0.50 0.58 0.64 0.70 1.00 1.17 1.40 1.75 F9 0.30 0.33 0.38 0.43 0.50 0.55 0.60 0.86 1.00 1.20 1.50 F10 0.25 0.28 0.31 0.36 0.42 0.45 0.50 0.71 0.83 1.00 1.25 F11 0.20 0.22 0.25 0.29 0.33 0.36 0.40 0.57 0.67 0.80 1.00 表 4 层次分析法平均一致性指标值
Table 4. The average consistency index value of the analytic hierarchy process
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 表 5 危岩落石地质灾害点自身严重程度评价结果
Table 5. Evaluation result of the severity of geological disaster point of rockfall
编号 工点名称 危险度 自身严重性 设计措施 工程措施评估 崩塌后上道概率 风险等级 1 赵家隧道进口 1.8131 低 骨架护坡 低 低 低风险 2 赵家隧道出口 1.4310 低 骨架护坡 低 低 低风险 3 张家隧道进口 1.7562 低 骨架护坡,明洞16 m 中 低 低风险 4 张家隧道出口 1.4310 低 骨架护坡,明洞20 m 中 低 低风险 5 蔡家隧道进口 1.4472 低 骨架护坡,明洞24 m 中 低 低风险 6 蔡家隧道出口 1.3172 低 骨架护坡,明洞37 m 中 低 低风险 7 杨家隧道进口 1.5448 低 骨架护坡,明洞11 m 中 低 低风险 8 杨家隧道出口 1.5936 低 骨架护坡,明洞7 m 中 低 低风险 9 老林岗隧道进口 1.5936 低 骨架护坡,明洞23 m 中 低 低风险 10 老林岗隧道出口 3.2521 高 清危, 1500 kJ被动网2道,明洞30 m高 中 高风险 11 茅山坡隧道进口 2.1464 低 被动网1道,明洞4.75 m 中 低 低风险 12 茅山坡隧道出口 3.2115 低 清危,主动网,被动网1道 高 低 低风险 13 晓峰隧道进口 1.7562 低 骨架护坡,明洞36.5 m 中 低 低风险 14 晓峰隧道出口 2.2684 低 清危,主动网,被动网2道,明洞17 m 中 低 低风险 15 万家山隧道进口 3.0245 低 清危,主动网,被动网1道 中 低 低风险 16 万家山隧道出口 1.5286 中 清危,骨架护坡,被动网1道 中 中 中风险 17 杨三岭隧道进口 1.4798 中 清危,锚杆框架,被动网2道,明洞17 m 高 低 低风险 18 杨三岭隧道出口 1.6099 低 锚杆框架,明洞5 m 中 低 低风险 19 板仓隧道进口 2.3741 中 清危,锚杆框架,被动网1道,明洞15 m 高 中 中风险 20 板仓隧道出口 1.6099 低 清危,骨架护坡,被动网1道,明洞10 m 中 低 低风险 21 吉家坡隧道进口 1.6099 低 清危,骨架护坡,被动网1道,明洞22 m 中 中 低风险 22 吉家坡隧道出口 1.9920 低 清危,被动网1道,明洞7 m 中 中 低风险 23 石岭隧道进口 1.9432 低 清危,被动网1道,明洞11 m 高 低 低风险 24 石岭隧道出口 2.2684 中 锚杆框架,明洞10 m 中 低 低风险 25 白岩隧道进口 1.9351 低 清危,主动网,被动网1道 中 低 低风险 26 白岩隧道出口 1.9838 低 清危,锚杆框架,明洞17 m 中 低 低风险 27 长岗岭隧道进口 2.0895 中 防撞墩、墙 低 低 低风险 28 长岗岭隧道出口 1.8212 低 清危,被动网1道 低 低 低风险 29 魏家山隧道进口 2.0082 中 清危,防撞墩、墙,明洞11 m 中 低 中风险 30 魏家山隧道出口 2.5285 高 清危,被动网1道 低 高 高风险 31 兴山东隧道进口 3.0651 中 分级刷坡,锚杆框架,动网,被动网1道 高 中 中风险 32 兴山东隧道出口 1.8618 低 锚杆框架,明洞18 m 中 低 低风险 33 长岭隧道进口 2.5610 中 清危,主动网,被动网2道 高 低 中风险 34 长岭左线隧道出口 1.4472 低 明洞12 m 中 低 低风险 35 长岭右线隧道出口 1.5529 低 锚杆框架,明洞12 m 中 低 低风险 表 6 RocPro3D中的计算参数
Table 6. Calculation parameters in RocPro3D
类型 描述 输入数据 危岩体 老林岗隧道出口仰坡 落石区域 密度/(kg·m−3) 形状 直径/m 崖顶区 2.65 球体 2.6 陡崖区 2.4 崖底区 2.1 魏家山隧道出口仰坡 W1 2.60 球体 2.4 W2 2.3 W3 2.3 地貌参数 老林岗隧道出口仰坡 地貌类型 Rn Rt k β_lim/(°) β_lim'/(°) 基岩 0.55 0.90 0.45 2 25 林地 0.25 0.65 0.65 6 45 沟道 0.40 0.85 0.55 4 35 魏家山隧道出口仰坡 基岩 0.55 0.85 0.55 4 32 耕地 0.35 0.80 0.60 8 40 林地 0.27 0.75 0.65 6 45 厂房 0.60 0.90 0.50 3 25 河道 0.00 0.00 10.00 0 0 能量耗散模型 R(V)=R/[1+(|V|/a)2], a= 9.1435 m/s随机数生成模型 真随机数 崩落次数 在每个圈定的危岩体范围内随机释放 1000 次概率模型 高斯变量 $ \varepsilon\mathrm{_{P(Gaussian)}}=\varepsilon+\sigma_{\varepsilon}\cdot N\left(0,1\right) $ -
[1] HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. doi: 10.1007/s10346-013-0436-y
[2] 臧佳园,常文斌,邢爱国,等. 含构造节理的崩塌体动力破碎特征[J]. 中国地质灾害与防治学报,2024,35(3):1 − 11. [ZANG Jiayuan,CHANG Wenbin,XING Aiguo,et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):1 − 11. (in Chinese with English abstract)]
ZANG Jiayuan, CHANG Wenbin, XING Aiguo, et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 1 − 11. (in Chinese with English abstract)
[3] GANG Luo,HU Xiewen,DU Yingjin,et al. A collision fragmentation model for predicting the distal reach of brittle fragmentable rock initiated from a cliff[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):579 − 592. doi: 10.1007/s10064-018-1286-6
[4] 贺凯,高杨,殷跃平,等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质,2020,47(4):82 − 89. [HE Kai,GAO Yang,YIN Yueping,et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology,2020,47(4):82 − 89. (in Chinese with English abstract)]
HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82 − 89. (in Chinese with English abstract)
[5] 罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract)]
LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 47(3): 913 − 934. (in Chinese with English abstract)
[6] 黄达,杨伟东,陈智强. 考虑软弱基座风化效应的望霞危岩崩塌机制分析[J]. 人民长江,2018,49(6):64 − 69. [HUANG Da,YANG Weidong,CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River,2018,49(6):64 − 69. (in Chinese with English abstract)]
HUANG Da, YANG Weidong, CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River, 2018, 49(6): 64 − 69. (in Chinese with English abstract)
[7] 边江豪,李秀珍,徐瑞池,王栋. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报,2021,32(2):84 − 93. [BIAN Jianghao,LI Xiuzhen,XU Ruichi,et al. Hazard zonation of large-scale landslides along Sichuan—Xizang railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):84 − 93. (in Chinese with English abstract)]
BIAN Jianghao, LI Xiuzhen, XU Ruichi, et al. Hazard zonation of large-scale landslides along Sichuan—Xizang railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 84 − 93. (in Chinese with English abstract)
[8] 王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟−以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model:A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]
WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)
[9] LI Haibo,LI Xiaowen,LI Wanzhou,et al. Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J]. Engineering Geology,2019,248:1 − 13. doi: 10.1016/j.enggeo.2018.11.003
[10] 董秀军,许强,佘金星,等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),2020,45(3):432 − 441. [DONG Xiujun,XU Qiang,SHE Jinxing,et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition),2020,45(3):432 − 441. (in Chinese with English abstract)]
DONG Xiujun, XU Qiang, SHE Jinxing, et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(3): 432 − 441. (in Chinese with English abstract)
[11] AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):709 − 724.
[12] STEVENS W D. Rocfall:A tool for probablistic analysis,design of remedial measures and prediction of rockfalls[M]. University of Toronto,1998.
[13] 黄维,艾东,胡胜华,等. 鄂西山区崩塌落石运动特征及危险性分析−以远安县瓦坡崩塌区为例[J]. 中国地质灾害与防治学报,2022,33(6):37 − 43. [HUANG Wei,AI Dong,HU Shenghua,et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province:A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):37 − 43. (in Chinese with English abstract)]
HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province: A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 37 − 43. (in Chinese with English abstract)
[14] 吴茂林,罗刚,梅雪峰,等. 基座损伤型危岩崩塌的动力学机理研究[J]. 三峡大学学报(自然科学版),2024,46(4):44 − 51. [WU Maolin,LUO Gang,MEI Xuefeng,et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences),2024,46(4):44 − 51. (in Chinese with English abstract)]
WU Maolin, LUO Gang, MEI Xuefeng, et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(4): 44 − 51. (in Chinese with English abstract)
[15] GUZZETTI F,CROSTA G,DETTI R,et al. STONE:A computer program for the three-dimensional simulation of rock-falls[J]. Computers & Geosciences,2002,28(9):1079 − 1093.
[16] RAMMER W,BRAUNER M,LEXER M J. Validation of An Integrated 3D Forest – Rockfall Model[J]. Journal of Geophysical Research-Space Physics,2007,9,04634,Vienna.
[17] YANG M,FUKAWA T,OHNISHI Y,et al. The application of 3-dimensional dda with a spherical rigid block for rockfall simulation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:611 − 616. doi: 10.1016/j.ijrmms.2004.03.108
[18] LAN Hengxing,DEREK MARTIN C,LIM C H. RockFall analyst:A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences,2007,33(2):262 − 279.
[19] 马显东,周剑,张路青,等. 基于崩塌滚石运动特征的防护网动态响应规律[J]. 地球科学,2022,47(12):4559 − 4573. [MA Xiandong,ZHOU Jian,ZHANG Luqing,et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science,2022,47(12):4559 − 4573. (in Chinese with English abstract)]
MA Xiandong, ZHOU Jian, ZHANG Luqing, et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science, 2022, 47(12): 4559 − 4573. (in Chinese with English abstract)
[20] ZHANG Wen,ZHAO Xiaohan,PAN Xiaojuan,et al. Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area,China[J]. Engineering Geology,2022,308:106807. doi: 10.1016/j.enggeo.2022.106807
[21] AKIN M,DINÇER İ,OK A Ö,et al. Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing[J]. Engineering Geology,2021,283:106001. doi: 10.1016/j.enggeo.2021.106001
[22] 王忠福,罗干,杨晓洁. 基于RocPro3D的大华桥水电站危岩体数值模拟研究[J]. 华北水利水电大学学报(自然科学版),2025,46(1):152 − 160. [WANG Zhongfu,LUO Gan,YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D,2025,46(1):152 − 160. (in Chinese with English abstract)]
WANG Zhongfu, LUO Gan, YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D, 2025, 46(1): 152 − 160. (in Chinese with English abstract)
[23] 黎尤,何坤,胡卸文,等. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报,2022,30(2):542 − 552. [LI You,HE Kun,HU Xiewen,et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain:Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology,2022,30(2):542 − 552. (in Chinese with English abstract)]
LI You, HE Kun, HU Xiewen, et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain: Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 2022, 30(2): 542 − 552. (in Chinese with English abstract)
[24] 陈宇,沈位刚,宋忠友,等. 土垫层缓冲落石冲击力特性离散元数值模拟分析[J]. 中国地质灾害与防治学报,2024,35(2):90 − 97. [CHEN Yu,SHEN Weigang,SONG Zhongyou,et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):90 − 97. (in Chinese with English abstract)]
CHEN Yu, SHEN Weigang, SONG Zhongyou, et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90 − 97. (in Chinese with English abstract)
[25] 黄海宁,巨能攀,黄健,等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质,2020,47(3):164 − 172. [HUANG Haining,JU Nengpan,HUANG Jian,et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology,2020,47(3):164 − 172. (in Chinese with English abstract)]
HUANG Haining, JU Nengpan, HUANG Jian, et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164 − 172. (in Chinese with English abstract)
[26] 孔伟. 郑万铁路宜万段边坡危岩变形破坏及落石运动特征[D]. 成都:成都理工大学,2018. [KONG Wei. Deformation,failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]
KONG Wei. Deformation, failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)
-