中国地质环境监测院
中国地质灾害防治工程行业协会
主办

宜昌至郑万高铁联络线施工阶段隧道进出口落石风险再评估

杨强国, 罗刚, 吴茂林, 张倩. 宜昌至郑万高铁联络线施工阶段隧道进出口落石风险再评估[J]. 中国地质灾害与防治学报, 2025, 36(4): 60-72. doi: 10.16031/j.cnki.issn.1003-8035.202405033
引用本文: 杨强国, 罗刚, 吴茂林, 张倩. 宜昌至郑万高铁联络线施工阶段隧道进出口落石风险再评估[J]. 中国地质灾害与防治学报, 2025, 36(4): 60-72. doi: 10.16031/j.cnki.issn.1003-8035.202405033
YANG Qiangguo, LUO Gang, WU Maolin, ZHANG Qian. Re-evaluation on rockfall risk at tunnel entrances and exits during the construction phase of Yichang—Zhengwan high speed railway connection line[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(4): 60-72. doi: 10.16031/j.cnki.issn.1003-8035.202405033
Citation: YANG Qiangguo, LUO Gang, WU Maolin, ZHANG Qian. Re-evaluation on rockfall risk at tunnel entrances and exits during the construction phase of Yichang—Zhengwan high speed railway connection line[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(4): 60-72. doi: 10.16031/j.cnki.issn.1003-8035.202405033

宜昌至郑万高铁联络线施工阶段隧道进出口落石风险再评估

  • 基金项目: 国家重点研发计划项目(2022YFC3005704);国家自然科学基金面上项目(42277143);四川省自然资源厅科研项目(KJ-2023-004;KJ-2023-029);中国中铁重大专项(2023-专项-05)
详细信息
    作者简介: 杨强国(1983—),男,四川广安人,地质工程专业,学士,高级工程师,主要从事地质灾害勘查设计与防治研究。E-mail:280422390@qq.com
    通讯作者: 罗 刚(1984—),男,甘肃天水人,地质工程专业,博士,教授,博导,主要从事高位高能危岩崩塌机理和防治研究。E-mail:luogang@home.swjtu.edu.cn
  • 中图分类号: TU43

Re-evaluation on rockfall risk at tunnel entrances and exits during the construction phase of Yichang—Zhengwan high speed railway connection line

More Information
  • 新建宜昌至郑万高铁联络线穿越秦岭造山带大巴山弧形构造带东缘,新构造运动强烈,地层岩性纷杂,地形起伏大,隧道洞口边仰坡发育大量危岩体,对联络线施工和运营安全构成严重威胁。在勘察阶段初步评价的基础上,文章以35个初步评估筛选出的风险边坡为研究对象开展再评估。考虑施工临时防护措施的有效性,通过赤平投影分析和模糊数学层次分析法,筛选出2个高风险隧道。之后,利用基于GIS模型和概率模型的RocPro3D模拟软件对落石动力学特征开展了预测分析。结果表明:(1)魏家山隧道出口受落石冲击概率较低,老林岗隧道出口受落石冲击概率极高;(2)老林岗隧道危岩体直接冲击隧道洞口的概率为24.73%,最大冲击能量为5649 kJ,最大速度为21.82 m/s,冲击点集中在隧道洞口右侧;(3)根据冲击概率、冲击能量、冲击速度、树林和地形等因素,亟须对危岩3区进行工程治理。研究成果可为郑万高铁联络线隧道危岩的有效防治提供参考。

  • 加载中
  • 图 1  部分隧道进出口工程措施降低了危岩落石危害

    Figure 1. 

    图 2  老林岗隧道出口危岩发育特征

    Figure 2. 

    图 3  陡崖2区赤平投影分析

    Figure 3. 

    图 4  魏家山隧道出口危岩发育特征

    Figure 4. 

    图 5  RocPro3D模拟的落石块体轨迹

    Figure 5. 

    图 6  老林岗隧道出口危岩体落石块体运动轨迹及运动学特征

    Figure 6. 

    图 7  老林岗隧道进口落石块体的冲击特征

    Figure 7. 

    图 8  100号轨迹运动学特征曲线

    Figure 8. 

    图 9  357号轨迹运动学特征曲线

    Figure 9. 

    图 10  797号轨迹运动学特征曲线

    Figure 10. 

    表 1  危岩落石严重性评价指标权重分级

    Table 1.  Classification of weights for severity evaluation indicators of perilous rocks

    评价因子 权重 轻微 中等 严重 极严重
    F1:不利结构面产状与坡面关系 0.1626 未发育结构面,或结构面倾向与坡向夹角>60°,结构面倾角<35° 结构面倾向与坡向夹角>40°且倾角>35° 结构面倾向与坡向
    夹角<40°且倾角>35°
    结构面倾向与坡向夹角<20°且倾角>35°
    F2:危岩体体积/m3 0.1464 ≤50 50~100 100~500 ≥500
    F3:危岩体与母岩分离程度 0.130 0 危岩体与母岩接触,裂隙不发育且张开度小 危岩体与母岩之间裂隙
    发育一般,延伸不远
    危岩体与母岩之间裂隙较发育,裂隙张开程度较大且延伸较远 危岩体与母岩之间多组裂隙发育贯通,张开度大且延伸远
    F4:节理发育程度和组合特征 0.1138 节理不发育 节理发育一般,组合较为不利 节理较发育,组合不利 节理极发育,组合极不利
    F5:地层岩性组合 0.0976 软质岩为主的边坡 硬质岩边坡 软硬岩互层,或硬质岩为
    主夹软质岩的边坡
    上部厚层硬质岩,下部软岩
    或软弱夹层的边坡
    F6:日降雨量/mm 0.0895 ≤50 50~100 100~250 >250
    F7:坡型 0.0813 台阶型 凹型 直线型 凸型
    F8:坡高/m 0.0569 ≤20 20~50 50~100 ≥100
    F9:坡度/(°) 0.0488 ≤20 20~40 40~60 ≥60
    F10:植被覆盖率 0.0406 植被极发育且多为乔木 植被较发育且
    大部分为乔木
    植被发育差,多为灌木 植被不发育,多为杂草
    F11:地震烈度 0.0325 ≤4 4~6 6~8 ≥8
    下载: 导出CSV

    表 2  判断矩阵标度(重要性指标)及其含义

    Table 2.  Scale and meaning of judgment matrix (importance indexes)

    标度值 含义
    1 表示两个指标相比,具有同样重要性
    3 表示两个指标相比,一个元素比另一个元素稍微重要
    5 表示两个指标相比,一个元素比另一个元素明显重要
    7 表示两个指标相比,一个元素比另一个元素强烈重要
    9 表示两个指标相比,一个元素比另一个元素极端重要
    2,4,6,8 2,4,6,8分别表示上述相邻判断1−3、3−5、5−7、7−9的中值
    倒数 表示元素ij比较的判断值aij,则元素ji比较的判断值aji=1/aij
    下载: 导出CSV

    表 3  危岩落石自身严重性判别矩阵

    Table 3.  Self-severity discrimination matrix of rockfall

    F1F2F3F4F5F6F7F8F9F10F11
    F11.001.111.251.431.671.822.002.863.334.005.00
    F20.901.001.131.291.501.641.802.573.003.604.50
    F30.800.891.001.141.331.451.602.292.673.204.00
    F40.700.780.881.001.171.271.402.002.332.803.50
    F50.600.670.750.861.001.091.201.712.002.403.00
    F60.550.610.690.790.921.001.101.571.832.202.75
    F70.500.560.630.710.830.911.001.431.672.002.50
    F80.350.390.440.500.580.640.701.001.171.401.75
    F90.300.330.380.430.500.550.600.861.001.201.50
    F100.250.280.310.360.420.450.500.710.831.001.25
    F110.200.220.250.290.330.360.400.570.670.801.00
    下载: 导出CSV

    表 4  层次分析法平均一致性指标值

    Table 4.  The average consistency index value of the analytic hierarchy process

    m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58
    下载: 导出CSV

    表 5  危岩落石地质灾害点自身严重程度评价结果

    Table 5.  Evaluation result of the severity of geological disaster point of rockfall

    编号 工点名称 危险度 自身严重性 设计措施 工程措施评估 崩塌后上道概率 风险等级
    1 赵家隧道进口 1.8131 骨架护坡 低风险
    2 赵家隧道出口 1.4310 骨架护坡 低风险
    3 张家隧道进口 1.7562 骨架护坡,明洞16 m 低风险
    4 张家隧道出口 1.4310 骨架护坡,明洞20 m 低风险
    5 蔡家隧道进口 1.4472 骨架护坡,明洞24 m 低风险
    6 蔡家隧道出口 1.3172 骨架护坡,明洞37 m 低风险
    7 杨家隧道进口 1.5448 骨架护坡,明洞11 m 低风险
    8 杨家隧道出口 1.5936 骨架护坡,明洞7 m 低风险
    9 老林岗隧道进口 1.5936 骨架护坡,明洞23 m 低风险
    10 老林岗隧道出口 3.2521 清危,1500 kJ被动网2道,明洞30 m 高风险
    11 茅山坡隧道进口 2.1464 被动网1道,明洞4.75 m 低风险
    12 茅山坡隧道出口 3.2115 清危,主动网,被动网1道 低风险
    13 晓峰隧道进口 1.7562 骨架护坡,明洞36.5 m 低风险
    14 晓峰隧道出口 2.2684 清危,主动网,被动网2道,明洞17 m 低风险
    15 万家山隧道进口 3.0245 清危,主动网,被动网1道 低风险
    16 万家山隧道出口 1.5286 清危,骨架护坡,被动网1道 中风险
    17 杨三岭隧道进口 1.4798 清危,锚杆框架,被动网2道,明洞17 m 低风险
    18 杨三岭隧道出口 1.6099 锚杆框架,明洞5 m 低风险
    19 板仓隧道进口 2.3741 清危,锚杆框架,被动网1道,明洞15 m 中风险
    20 板仓隧道出口 1.6099 清危,骨架护坡,被动网1道,明洞10 m 低风险
    21 吉家坡隧道进口 1.6099 清危,骨架护坡,被动网1道,明洞22 m 低风险
    22 吉家坡隧道出口 1.9920 清危,被动网1道,明洞7 m 低风险
    23 石岭隧道进口 1.9432 清危,被动网1道,明洞11 m 低风险
    24 石岭隧道出口 2.2684 锚杆框架,明洞10 m 低风险
    25 白岩隧道进口 1.9351 清危,主动网,被动网1道 低风险
    26 白岩隧道出口 1.9838 清危,锚杆框架,明洞17 m 低风险
    27 长岗岭隧道进口 2.0895 防撞墩、墙 低风险
    28 长岗岭隧道出口 1.8212 清危,被动网1道 低风险
    29 魏家山隧道进口 2.0082 清危,防撞墩、墙,明洞11 m 中风险
    30 魏家山隧道出口 2.5285 清危,被动网1道 高风险
    31 兴山东隧道进口 3.0651 分级刷坡,锚杆框架,动网,被动网1道 中风险
    32 兴山东隧道出口 1.8618 锚杆框架,明洞18 m 低风险
    33 长岭隧道进口 2.5610 清危,主动网,被动网2道 中风险
    34 长岭左线隧道出口 1.4472 明洞12 m 低风险
    35 长岭右线隧道出口 1.5529 锚杆框架,明洞12 m 低风险
    下载: 导出CSV

    表 6  RocPro3D中的计算参数

    Table 6.  Calculation parameters in RocPro3D

    类型 描述 输入数据
    危岩体 老林岗隧道出口仰坡 落石区域 密度/(kg·m−3 形状 直径/m
    崖顶区 2.65 球体 2.6
    陡崖区 2.4
    崖底区 2.1
    魏家山隧道出口仰坡 W1 2.60 球体 2.4
    W2 2.3
    W3 2.3
    地貌参数 老林岗隧道出口仰坡 地貌类型 Rn Rt k β_lim/(°) β_lim'/(°)
    基岩 0.55 0.90 0.45 2 25
    林地 0.25 0.65 0.65 6 45
    沟道 0.40 0.85 0.55 4 35
    魏家山隧道出口仰坡 基岩 0.55 0.85 0.55 4 32
    耕地 0.35 0.80 0.60 8 40
    林地 0.27 0.75 0.65 6 45
    厂房 0.60 0.90 0.50 3 25
    河道 0.00 0.00 10.00 0 0
    能量耗散模型 R(V)=R/[1+(|V|/a)2], a=9.1435 m/s
    随机数生成模型 真随机数
    崩落次数 在每个圈定的危岩体范围内随机释放1000
    概率模型 高斯变量 $ \varepsilon\mathrm{_{P(Gaussian)}}=\varepsilon+\sigma_{\varepsilon}\cdot N\left(0,1\right) $
    下载: 导出CSV
  • [1]

    HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. doi: 10.1007/s10346-013-0436-y

    [2]

    臧佳园,常文斌,邢爱国,等. 含构造节理的崩塌体动力破碎特征[J]. 中国地质灾害与防治学报,2024,35(3):1 − 11. [ZANG Jiayuan,CHANG Wenbin,XING Aiguo,et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):1 − 11. (in Chinese with English abstract)]

    ZANG Jiayuan, CHANG Wenbin, XING Aiguo, et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 1 − 11. (in Chinese with English abstract)

    [3]

    GANG Luo,HU Xiewen,DU Yingjin,et al. A collision fragmentation model for predicting the distal reach of brittle fragmentable rock initiated from a cliff[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):579 − 592. doi: 10.1007/s10064-018-1286-6

    [4]

    贺凯,高杨,殷跃平,等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质,2020,47(4):82 − 89. [HE Kai,GAO Yang,YIN Yueping,et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology,2020,47(4):82 − 89. (in Chinese with English abstract)]

    HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82 − 89. (in Chinese with English abstract)

    [5]

    罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract)]

    LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 47(3): 913 − 934. (in Chinese with English abstract)

    [6]

    黄达,杨伟东,陈智强. 考虑软弱基座风化效应的望霞危岩崩塌机制分析[J]. 人民长江,2018,49(6):64 − 69. [HUANG Da,YANG Weidong,CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River,2018,49(6):64 − 69. (in Chinese with English abstract)]

    HUANG Da, YANG Weidong, CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River, 2018, 49(6): 64 − 69. (in Chinese with English abstract)

    [7]

    边江豪,李秀珍,徐瑞池,王栋. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报,2021,32(2):84 − 93. [BIAN Jianghao,LI Xiuzhen,XU Ruichi,et al. Hazard zonation of large-scale landslides along Sichuan—Xizang railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):84 − 93. (in Chinese with English abstract)]

    BIAN Jianghao, LI Xiuzhen, XU Ruichi, et al. Hazard zonation of large-scale landslides along Sichuan—Xizang railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 84 − 93. (in Chinese with English abstract)

    [8]

    王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟−以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model:A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]

    WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)

    [9]

    LI Haibo,LI Xiaowen,LI Wanzhou,et al. Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J]. Engineering Geology,2019,248:1 − 13. doi: 10.1016/j.enggeo.2018.11.003

    [10]

    董秀军,许强,佘金星,等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),2020,45(3):432 − 441. [DONG Xiujun,XU Qiang,SHE Jinxing,et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition),2020,45(3):432 − 441. (in Chinese with English abstract)]

    DONG Xiujun, XU Qiang, SHE Jinxing, et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(3): 432 − 441. (in Chinese with English abstract)

    [11]

    AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):709 − 724.

    [12]

    STEVENS W D. Rocfall:A tool for probablistic analysis,design of remedial measures and prediction of rockfalls[M]. University of Toronto,1998.

    [13]

    黄维,艾东,胡胜华,等. 鄂西山区崩塌落石运动特征及危险性分析−以远安县瓦坡崩塌区为例[J]. 中国地质灾害与防治学报,2022,33(6):37 − 43. [HUANG Wei,AI Dong,HU Shenghua,et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province:A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):37 − 43. (in Chinese with English abstract)]

    HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province: A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 37 − 43. (in Chinese with English abstract)

    [14]

    吴茂林,罗刚,梅雪峰,等. 基座损伤型危岩崩塌的动力学机理研究[J]. 三峡大学学报(自然科学版),2024,46(4):44 − 51. [WU Maolin,LUO Gang,MEI Xuefeng,et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences),2024,46(4):44 − 51. (in Chinese with English abstract)]

    WU Maolin, LUO Gang, MEI Xuefeng, et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(4): 44 − 51. (in Chinese with English abstract)

    [15]

    GUZZETTI F,CROSTA G,DETTI R,et al. STONE:A computer program for the three-dimensional simulation of rock-falls[J]. Computers & Geosciences,2002,28(9):1079 − 1093.

    [16]

    RAMMER W,BRAUNER M,LEXER M J. Validation of An Integrated 3D Forest – Rockfall Model[J]. Journal of Geophysical Research-Space Physics,2007,9,04634,Vienna.

    [17]

    YANG M,FUKAWA T,OHNISHI Y,et al. The application of 3-dimensional dda with a spherical rigid block for rockfall simulation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:611 − 616. doi: 10.1016/j.ijrmms.2004.03.108

    [18]

    LAN Hengxing,DEREK MARTIN C,LIM C H. RockFall analyst:A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences,2007,33(2):262 − 279.

    [19]

    马显东,周剑,张路青,等. 基于崩塌滚石运动特征的防护网动态响应规律[J]. 地球科学,2022,47(12):4559 − 4573. [MA Xiandong,ZHOU Jian,ZHANG Luqing,et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science,2022,47(12):4559 − 4573. (in Chinese with English abstract)]

    MA Xiandong, ZHOU Jian, ZHANG Luqing, et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science, 2022, 47(12): 4559 − 4573. (in Chinese with English abstract)

    [20]

    ZHANG Wen,ZHAO Xiaohan,PAN Xiaojuan,et al. Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area,China[J]. Engineering Geology,2022,308:106807. doi: 10.1016/j.enggeo.2022.106807

    [21]

    AKIN M,DINÇER İ,OK A Ö,et al. Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing[J]. Engineering Geology,2021,283:106001. doi: 10.1016/j.enggeo.2021.106001

    [22]

    王忠福,罗干,杨晓洁. 基于RocPro3D的大华桥水电站危岩体数值模拟研究[J]. 华北水利水电大学学报(自然科学版),2025,46(1):152 − 160. [WANG Zhongfu,LUO Gan,YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D,2025,46(1):152 − 160. (in Chinese with English abstract)]

    WANG Zhongfu, LUO Gan, YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D, 2025, 46(1): 152 − 160. (in Chinese with English abstract)

    [23]

    黎尤,何坤,胡卸文,等. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报,2022,30(2):542 − 552. [LI You,HE Kun,HU Xiewen,et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain:Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology,2022,30(2):542 − 552. (in Chinese with English abstract)]

    LI You, HE Kun, HU Xiewen, et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain: Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 2022, 30(2): 542 − 552. (in Chinese with English abstract)

    [24]

    陈宇,沈位刚,宋忠友,等. 土垫层缓冲落石冲击力特性离散元数值模拟分析[J]. 中国地质灾害与防治学报,2024,35(2):90 − 97. [CHEN Yu,SHEN Weigang,SONG Zhongyou,et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):90 − 97. (in Chinese with English abstract)]

    CHEN Yu, SHEN Weigang, SONG Zhongyou, et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90 − 97. (in Chinese with English abstract)

    [25]

    黄海宁,巨能攀,黄健,等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质,2020,47(3):164 − 172. [HUANG Haining,JU Nengpan,HUANG Jian,et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology,2020,47(3):164 − 172. (in Chinese with English abstract)]

    HUANG Haining, JU Nengpan, HUANG Jian, et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164 − 172. (in Chinese with English abstract)

    [26]

    孔伟. 郑万铁路宜万段边坡危岩变形破坏及落石运动特征[D]. 成都:成都理工大学,2018. [KONG Wei. Deformation,failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]

    KONG Wei. Deformation, failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

  • 加载中

(10)

(6)

计量
  • 文章访问数:  9
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-05-29
修回日期:  2024-09-26
录用日期:  2024-11-05
刊出日期:  2025-08-25

目录