Study on the May 28 Birch high-altitude and long-runout ice-rock avalanche in the Swiss Alps
-
摘要:
2025年5月28日,瑞士南部瓦莱州阿尔卑斯山脉桦树(Birch)冰川发生高位远程冰岩崩-碎屑流灾害,导致下游Blatten镇与Ried村被彻底摧毁,300余人紧急撤离,1人失踪。文章基于多期卫星遥感影像、灾害前后的无人机数据、滑震信号和现场视频资料,对“5•28”Birch高位冰岩崩-碎屑流灾害的发育特征、演化过程和成灾动力学开展了系统研究。初步结果表明:受全球气候变暖和冻融循环共同驱动,位于Birch冰川上部南侧、相对高差约300 m的Nesthorn峰频繁发生岩崩,坠落的碎屑物质持续堆积于冰川表面,在削弱冰川物质亏损的同时增强了冰川的塑性流动,促使前缘鼓胀变形加剧以及冰裂缝扩展。遥感解译显示:近10年来冰川面积扩张约44%,冰舌向前运动约110 m。地质灾害发生过程中,约3.0×106 m3的楔形崩滑体发生高位失稳,以约36 m/s的速度持续冲击加载下部Birch冰川,引发共计约6.0×106 m3的冰川及其上覆碎屑发生整体失稳,随后转换成高速远程运动的冰岩碎屑流,并以约64 m/s的平均速度冲出沟口,在与对岸山体发生碰撞后就位堆积。这类发育于高寒、高海拔极高山区的冰岩型高位远程地质灾害在我国喜马拉雅造山带广泛分布,严重威胁系列重大工程地质安全,文章可为相关防灾减灾提供一定参考。
Abstract:On May 28, 2025, a high-altitude and long-runout ice-rock avalanche disaster occurred at the Birch Glacier in the Alps of the Valais region in southern Switzerland. This incident completely devastated the downstream towns of Blatten and Ried, leading to the emergency evacuation of over 300 individuals, with one person reported missing. This study presents a systematic investigation into the developmental characteristics, evolutionary processes, and disaster dynamics of the “5•28” Birch high-altitude and long-runout ice-rock avalanche, utilizing multi-temporal satellite remote sensing images, UAV data collected pre- and post-disaster, landquake signal, and on-site video footage. Preliminary results indicate that the Nesthorn Peak, located at a relative altitude of approximately 300 meters on the south side of the upper Birch Glacier, frequently experienced rockfalls driven by a combination of global climate warming and freeze-thaw cycles. While the accumulated debris on the glacier surface suppressed glacial ablation, it enhanced plastic flow, intensified bulging at the glacier front, and promoted the expansion of ice crevasses. Remote sensing interpretation revealed that the glacier area has expanded by approximately 44% over the past decade, with the glacier tongue advancing about 110 meters. During the disaster, around 3.0×106 m3 of wedge-shaped sliding mass experienced high-altitude instability, continually impacting the lower Birch Glacier at a velocity of about 36 m/s. This triggered a total instability involving approximately 6.0×106 m3 of glacial material and its covered debris, which subsequently transformed into a rapidly moving ice-rock avalanche that surged out of the valley at an average speed of 64 m/s, accumulating upon collision with the opposite mountainside. Such high-altitude and long-runout geological disasters, characterized by ice-rock compositions and developed in high-mountains area, are widely distributed throughout the Himalayan orogenic belt in China, posing serious threats to the geological safety of major engineering projects. This research may provide useful references for disaster prevention and mitigation strategies.
-
Key words:
- Birch Glacier /
- glacier detachment /
- high-altitude and long-runout /
- ice-rock avalanche
-
-
[1] DANIEL FARINOTTI,MATTHIAS HUSS,MYLÈNE JACQUEMART,et al. Fact sheet for the now-collapsed Birchgletscher,Switzerland[R]. Swiss Federal Institute of Technology Zurich,and Snow and Landscape Research WSL,2025.
[2] YIN Yueping,LI Bin,GAO Yang,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. doi: 10.1016/j.jrmge.2022.11.001
[3] 杨情情,郑欣玉,苏志满,等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学,2022,47(3):935 − 949. [YANG Qingqing,ZHENG Xinyu,SU Zhiman,et al. Review on rock-ice avalanches[J]. Earth Science,2022,47(3):935 − 949. (in Chinese with English abstract)] doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203014
YANG Qingqing, ZHENG Xinyu, SU Zhiman, et al. Review on rock-ice avalanches[J]. Earth Science, 2022, 47(3): 935 − 949. (in Chinese with English abstract) doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203014
[4] 胡文涛,姚檀栋,余武生,等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土,2018,40(6):1141 − 1152. [HU Wentao,YAO Tandong,YU Wusheng,et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology,2018,40(6):1141 − 1152. (in Chinese with English abstract)]
HU Wentao, YAO Tandong, YU Wusheng, et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1141 − 1152. (in Chinese with English abstract)
[5] MERGILI M,FRANK B,FISCHER J T,et al. Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r. avaflow:Lessons learned for predictive mass flow simulations[J]. Geomorphology,2018,322:15 − 28. doi: 10.1016/j.geomorph.2018.08.032
[6] EVANS S G,BISHOP N F,FIDEL SMOLL L,et al. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán,Cordillera Blanca,Peru in 1962 and 1970[J]. Engineering Geology,2009,108(1/2):96 − 118.
[7] DELANEY K B,EVANS S G. The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces[J]. Landslides,2014,11(6):1019 − 1036. doi: 10.1007/s10346-013-0456-7
[8] HUGGEL C,ZGRAGGEN-OSWALD S,HAEBERLI W,et al. The 2002 rock/ice avalanche at Kolka/Karmadon,Russian Caucasus:Assessment of extraordinary avalanche formation and mobility,and application of QuickBird satellite imagery[J]. Natural Hazards and Earth System Sciences,2005,5(2):173 − 187. doi: 10.5194/nhess-5-173-2005
[9] EVANS S G,TUTUBALINA O V,DROBYSHEV V N,et al. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier,Caucasus Mountains,Russia in 2002[J]. Geomorphology,2009,105(3/4):314 − 321.
[10] 殷跃平,李滨,张田田,等. 印度查莫利“2•7” 冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract)]
YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1 − 8. (in Chinese with English abstract)
[11] SHUGAR D H,JACQUEMART M,SHEAN D,et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli,Indian Himalaya[J]. Science,2021,373(6552):300 − 306. doi: 10.1126/science.abh4455
[12] MANI P,ALLEN S,EVANS S G,et al. Geomorphic process chains in high-mountain regions:A review and classification approach for natural hazards assessment[J]. Reviews of Geophysics,2023,61(4):e2022RG000791. doi: 10.1029/2022RG000791
[13] 彭建兵,张永双,黄达,等. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应[J]. 地球科学,2023,48(8):3099 − 3114. [PENG Jianbing,ZHANG Yongshuang,HUANG Da,et al. Interaction disaster effects of the tectonic deformation sphere,rock mass loosening sphere,surface freeze-thaw sphere and engineering disturbance sphere on the Xizang Plateau[J]. Earth Science,2023,48(8):3099 − 3114. (in Chinese with English abstract)]
PENG Jianbing, ZHANG Yongshuang, HUANG Da, et al. Interaction disaster effects of the tectonic deformation sphere, rock mass loosening sphere, surface freeze-thaw sphere and engineering disturbance sphere on the Xizang Plateau[J]. Earth Science, 2023, 48(8): 3099 − 3114. (in Chinese with English abstract)
[14] 申艳军,彭建兵,陈兴,等. 高山冰川地貌区垂直分带性与地质灾害空间配置关系[J]. 岩石力学与工程学报,2023,42(6):1336 − 1351. [SHEN Yanjun,PENG Jianbing,CHEN Xing,et al. Relationship between vertical zonality and spatial allocation of geological hazards in alpine glacial geomorphology[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1336 − 1351. (in Chinese with English abstract)]
SHEN Yanjun, PENG Jianbing, CHEN Xing, et al. Relationship between vertical zonality and spatial allocation of geological hazards in alpine glacial geomorphology[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1336 − 1351. (in Chinese with English abstract)
[15] ZHANG Tiantian,GAO Yang,LI Bin,et al. Characteristics of rock-ice avalanches and geohazard-chains in the Parlung Zangbo Basin,Xizang,China[J]. Geomorphology,2023,422:108549. doi: 10.1016/j.geomorph.2022.108549
[16] KÄÄB A,JACQUEMART M,GILBERT A,et al. Sudden large-volume detachments of low-angle mountain glaciers–more frequent than thought?[J]. The Cryosphere,2021,15(4):1751 − 1785. doi: 10.5194/tc-15-1751-2021
[17] 高少华,殷跃平,李滨,等. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征[J]. 工程地质学报,2024,32(3):996 − 1009. [GAO Shaohua,YIN Yueping,LI Bin,et al. Dynamic characteristics of the rock-ice avalanche disaster chain in the zelongnong basin,Yarlung Zangbo river canyon region[J]. Journal of Engineering Geology,2024,32(3):996 − 1009. (in Chinese with English abstract)]
GAO Shaohua, YIN Yueping, LI Bin, et al. Dynamic characteristics of the rock-ice avalanche disaster chain in the zelongnong basin, Yarlung Zangbo river canyon region[J]. Journal of Engineering Geology, 2024, 32(3): 996 − 1009. (in Chinese with English abstract)
[18] 张欣欣,范宣梅,王文松,等. 高寒地区楔形体滑坡启动机制离心模型试验研究[J]. 岩石力学与工程学报,2023,42(5):1202 − 1213. [ZHANG Xinxin,FAN Xuanmei,WANG Wensong,et al. Initiation mechanism of wedge landslide in alpine regions by centrifugal model test[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1202 − 1213. (in Chinese with English abstract)]
ZHANG Xinxin, FAN Xuanmei, WANG Wensong, et al. Initiation mechanism of wedge landslide in alpine regions by centrifugal model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1202 − 1213. (in Chinese with English abstract)
[19] 殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract)] doi: 10.12029/gc20170501
YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5): 827 − 841. (in Chinese with English abstract) doi: 10.12029/gc20170501
[20] PUDASAINI S P,KRAUTBLATTER M. A two-phase mechanical model for rock-ice avalanches[J]. Journal of Geophysical Research:Earth Surface,2014,119(10):2272 − 2290. doi: 10.1002/2014JF003183
[21] KÄÄB A,LEINSS S,GILBERT A,et al. Massive collapse of two glaciers in western Xizang in 2016 after surge-like instability[J]. Nature Geoscience,2018,11(2):114 − 120. doi: 10.1038/s41561-017-0039-7
[22] 许世民,殷跃平,邢爱国. 基于地震信号的贵州纳雍崩塌-碎屑流运动特征分析[J]. 中国地质灾害与防治学报,2020,31(2):1 − 8. [XU Shimin,YIN Yueping,XING Aiguo. Characteristic analysis of the Nayong rock avalanche’s kinematics based on seismic signals[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):1 − 8. (in Chinese with English abstract)]
XU Shimin, YIN Yueping, XING Aiguo. Characteristic analysis of the Nayong rock avalanche’s kinematics based on seismic signals[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 1 − 8. (in Chinese with English abstract)
[23] LI Wei,WANG Dongpo,YI Xuebin,et al. Characterizing large rockfalls using their seismic signature:A case study of Hongya rockfall[J]. Engineering Geology,2023,323:107222. doi: 10.1016/j.enggeo.2023.107222
[24] ALLSTADT K E,MATOZA R S,LOCKHART A B,et al. Seismic and acoustic signatures of surficial mass movements at volcanoes[J]. Journal of Volcanology and Geothermal Research,2018,364:76 − 106. doi: 10.1016/j.jvolgeores.2018.09.007
[25] ALLSTADT K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms[J]. Journal of Geophysical Research:Earth Surface,2013,118(3):1472 − 1490. doi: 10.1002/jgrf.20110
[26] SCHNEIDER D,BARTELT P,CAPLAN-AUERBACH J,et al. Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model[J]. Journal of Geophysical Research:Earth Surface,2010,115(F4):2010JF001734. doi: 10.1029/2010JF001734
[27] YAN Yan,CUI Yifei,GUO Jian,et al. Landslide reconstruction using seismic signal characteristics and numerical simulations:Case study of the 2017 “6•24” Xinmo landslide[J]. Engineering Geology,2020,270:105582. doi: 10.1016/j.enggeo.2020.105582
[28] ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Block-grain phase transition in rock avalanches:Insights from large-scale experiments[J]. Journal of Geophysical Research:Earth Surface,2023,128(11):e2023JF007204. doi: 10.1029/2023JF007204
[29] BOTTELIN P,JONGMANS D,DAUDON D,et al. Seismic and mechanical studies of the artificially triggered rockfall at Mount Néron (French Alps,December 2011)[J]. Natural Hazards and Earth System Sciences,2014,14(12):3175 − 3193. doi: 10.5194/nhess-14-3175-2014
[30] HIBERT C,EKSTRÖM G,STARK C P. Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis[J]. Geophysical Research Letters,2014,41(13):4535 − 4541. doi: 10.1002/2014GL060592
-