海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景

张辉, 杨睿, 匡增桂, 黄丽, 阎贫. 海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景[J]. 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
引用本文: 张辉, 杨睿, 匡增桂, 黄丽, 阎贫. 海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景[J]. 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
ZHANG Hui, YANG Rui, KUANG Zenggui, HUANG Li, YAN Pin. MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
Citation: ZHANG Hui, YANG Rui, KUANG Zenggui, HUANG Li, YAN Pin. MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013

海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景

  • 基金项目:
    国家高技术研究发展计划(863计划)项目(2013AA 0925010202);国土资源部海底矿产资源重点实验室开放基金(KLMMR-2014-B-01);中国石油天然气集团公司与中国科学院高端战略联盟计划“天然气水合物资源评价、开采方法及安全保障技术研究”(2015A-4813)
详细信息
    作者简介: 张辉(1980—),男,博士,助理研究员,从事天然气水合物数值模拟研究,E-mail:zhanghui@ms.giec.ac.cn
    通讯作者: 杨睿(1980—),男,博士,助理研究员,主要从事天然气水合物地球物理方面的研究,E-mail: yangrui@ms.giec.ac.cn
  • 中图分类号: P618.13

  • 蔡秋蓉编辑

MATHEMATICAL SIMULATION FOR SUBMARINE GAS HYDRATE FORMATION: UPON THE ASSUMPTION OF UPWARD ADVECTION OF METHANE-BEARING POREWATER

More Information
  • 为深入了解深部上升流体供应甲烷的海底沉积环境中天然气水合物的形成和聚集过程,综合沉积作用、深部上升甲烷流体的对流和扩散作用、甲烷溶解度控制水合物形成等物理过程,建立了天然气水合物形成过程的数学模型,研究水合物在空间和时间尺度上的形成过程。模型通过3个无量纲参数(沉积压实引起的孔隙流体对流与扩散的比率Pe1、深部流体向上对流传输与扩散的比率Pe2、深部上升流体的甲烷含量$\widetilde C_{m, ext}^{_{_{\rm{l}}}}$),形象地描述了天然气水合物在海底沉积中的聚集过程。数值模拟研究表明,天然气水合物首先在稳定带内上部某一位置形成,随后由于沉积作用向下延伸而在稳定带底部形成水合物;水合物演化时间与Pe1、Pe2及$\widetilde C_{m, ext}^{_{_{\rm{l}}}}$呈负相关;水合物含量与Pe1、$\widetilde C_{m, ext}^{_{_{\rm{l}}}}$负相关,而与Pe2正相关。甲烷溶解度曲线对水合物形成和分布有重要影响,但深部上升流体的甲烷含量、上升流体的通量决定了整个水合物系统甲烷量的输入和输出,是海底天然气水合物形成的主要控制因素。

  • 加载中
  • 图 1  模型参数敏感度分析

    Figure 1. 

    图 2  海底沉积物中孔隙水溶解甲烷及水合物形成聚集过程模拟

    Figure 2. 

    图 3  甲烷供给量比较充足时水合物形成过程中的不稳定特征

    Figure 3. 

    表 1  布莱克海台与水合物脊水合物形成过程数值模拟参数

    Table 1.  Parameters for simulation from Blake Platform and Hydrate Ridge

    模型参数 布莱克海台 水合物脊
    海底深度z/m 2781[1] 1311[20]
    海底温度T/℃ 3.4[1] 2.7[20]
    地温梯度G/℃·m-1 0.04[1] 0.054[20]
    稳定带厚度Lz/m 450[3] 225[20]
    沉积速度Vs/cm·ka-1 22[24] 25[20]
    甲烷扩散系数Dm/m2·s-1 10-9[11] 10-9[11]
    深部上升流体速度Vl,ext/mm·a-1 -0.26[20] -1[17]
    沉积引起的孔隙流体通量Ul,sed/m·s-1 2.32×10-13 2.64×10-13
    孔隙流体净通量Ul/m·s-1 -5.82×10-12 -2.22×10-11
    Pe1 0.1 0.06
    Pe2 -2.57 -5.16
    $\widetilde C_{m, ext}^{_{_{\rm{l}}}}$ 0.9 0.9
    下载: 导出CSV
  • [1]

    Paull C K, Matsumoto R, Wallace P J. Proceedings of the ocean drilling program, initial reports[R]. College Station, TX (Ocean Drilling Program), 1996, 164.

    [2]

    吴能友, 梁金强, 王宏斌, 等.海洋天然气水合物成藏系统研究进展[J].现代地质, 2008, 22(3): 356-362. http://d.old.wanfangdata.com.cn/Periodical/xddz200803003

    WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art (in Chinese) [J]. Geoscience, 2008, 22(13): 356-362. http://d.old.wanfangdata.com.cn/Periodical/xddz200803003

    [3]

    Paull C K, Matsumoto R. Proceedings of the ocean drilling program, scientific results [R].College Station, TX (Ocean Drilling Program), 2000, 164: 3-10.

    [4]

    Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213: 169-183. doi: 10.1016/S0012-821X(03)00325-X

    [5]

    Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204 [J]. Earth and Planetary Science Letters, 2004, 222: 845-862. doi: 10.1016/j.epsl.2004.03.035

    [6]

    Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion [J]. Journal of Geophysical Research, 1992, 97(B5): 7025-7041. doi: 10.1029/91JB03061

    [7]

    Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media [J]. Journal of Geophysical Research, 1997, 102(B5): 10151-10164. doi: 10.1029/97JB00392

    [8]

    Rempel A W, Buffett B A. Mathematical models of gas hydrate accumulation [J]. Geological Society, London, Special Publications, 1998, 137(1): 63-74. doi: 10.1144/GSL.SP.1998.137.01.05

    [9]

    Xu W Y, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments [J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092

    [10]

    Zatsepina O Y, Buffett B A. Thermodynamic conditions for the study of gas hydrates in the seafloor [J]. Journal of Geophysical Research, 1998, 103(B10): 24127-24139. doi: 10.1029/98JB02137

    [11]

    Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor [J]. Journal of Geophysical Research-Solid Earth, 2001, 106(B1): 497-514. doi: 10.1029/2000JB900363

    [12]

    Bhatnagar G, Chapman W G., Dickens G R, et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes [J]. American Journal of Science, 2007, 307: 861-900. doi: 10.2475/06.2007.01

    [13]

    Haacke R R, Westbrook G K, Riley M S. Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs): A case study from the west Svalbard continental slope [J]. Journal of Geophysical Research, 2008, 113: B05104. http://cn.bing.com/academic/profile?id=2bf54aea3b4b5906f0345fbc097e4157&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Haacke R R, Westbrook G K, Hyndman R D. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 407-420. doi: 10.1016/j.epsl.2007.07.008

    [15]

    Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology, 1999, 153: 53-79. doi: 10.1016/S0009-2541(98)00152-1

    [16]

    Davie M K, Zatsepina O Y, Buffett B A. Methane solubility in marine hydrate environments [J]. Marine Geology, 2004, 203(1-2): 177-184. doi: 10.1016/S0025-3227(03)00331-1

    [17]

    Wang K, Hyndman R D, Davis E E. Thermal effects of sediment thickening and fluid expulsion in accretionary prisms-model and parameter analysis [J]. Journal of Geophysical Research, 1993, 98(6): 9975-9984. http://cn.bing.com/academic/profile?id=60c84627fccb80e80f2d07e8972cdc3b&encoded=0&v=paper_preview&mkt=zh-cn

    [18]

    Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir [J]. Nature, 1997, 385(6615): 426-428. doi: 10.1038/385426a0

    [19]

    Torres M E, Wallman, K, Trehu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon [J]. Earth and Planetary Science Letters, 2004, 226: 225-241. doi: 10.1016/j.epsl.2004.07.029

    [20]

    Haeckel M, Suess E, Wallman K, et al. Rising methane gas bubbles form massive hydrate layers at the seafloor [J]. Geochimica et Cosmochimica Acta, 2004, 68: 4335-4345. doi: 10.1016/j.gca.2004.01.018

    [21]

    Wallmann K, Aloisi G, Obzhirov A, et al. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3905-3927. doi: 10.1016/j.gca.2006.06.003

    [22]

    Westbrook G K, Carson B, Musgrave R J, et al. Proceedings of the ocean drilling program, initial reports [R].College Station, TX (Ocean Drilling Program), 1994, 146.http://www-odp.tamu.edu/publications/146_1_IR/VOLUME/CHAPTERS/146irpt1.pdf

    [23]

    Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [24]

    Davie M K, Buffett B A. A steady state model for marine hydrate formation: Constraints on methane supply from pore water sulfate profiles [J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B10): 2495. http://cn.bing.com/academic/profile?id=7bbd3b4c84bfe1244db235a94e4789dd&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    Kastner M, Kvenvolden K A, Whiticar M J, et al. Relation Between Pore Fluid Chemistry and Gas Hydrates Associated with Bottom-Simulating Reflectors at the Cascadia Margin, Sites 889 and 892 [C]//In: Carson B, Westbrook G K, Musgrave R J, Suess E, Eds. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 146: 175-187.

    [26]

    Kvenvolden K A. Gas hydrates-geological perspective and global change [J]. Reviews of Geophysics, 1993, 31(2): 173-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=756561cd96b062bf9ab8a8aaf8aba11d

    [27]

    Paull C K, Ussler W I, Borowski W S. Natural gas hydrates, chapter sources of biogenic methane to form marine gas hydrates [J]. Annals of the New York Academy of Sciences, 1994, 715: 392-409. doi: 10.1111/j.1749-6632.1994.tb38852.x

    [28]

    Pecher I A, Minshull T A, Singh S C, et al. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 459-469. doi: 10.1016/0012-821X(95)00242-5

    [29]

    Huene R V, Pecher I A. Vertical tectonics and the origins of BSRs along the Peru margin [J]. Earth and Planetary Science Letters, 1999, 166(1-2): 47-55. doi: 10.1016/S0012-821X(98)00274-X

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1271
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2016-10-20
修回日期:  2016-11-30
刊出日期:  2017-02-28

目录