东马努斯盆地热液蚀变火山岩元素迁移特征及影响因素

赵霞, 黄朋, 胡宁静, 孔娟娟, 廖仁强, 王雄. 东马努斯盆地热液蚀变火山岩元素迁移特征及影响因素[J]. 海洋地质与第四纪地质, 2017, 37(3): 86-101. doi: 10.16562/j.cnki.0256-1492.2017.03.009
引用本文: 赵霞, 黄朋, 胡宁静, 孔娟娟, 廖仁强, 王雄. 东马努斯盆地热液蚀变火山岩元素迁移特征及影响因素[J]. 海洋地质与第四纪地质, 2017, 37(3): 86-101. doi: 10.16562/j.cnki.0256-1492.2017.03.009
ZHAO Xia, HUANG Peng, HU Ningjing, KONG Juanjuan, LIAO Renqiang, WANG Xiong. CHARACTERISTICS AND INFLUENCE FACTORS OF ELEMENT MIGRATION OF HYDROTHERMAL ALTERED ROCK IN EASTERN MANUS BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 86-101. doi: 10.16562/j.cnki.0256-1492.2017.03.009
Citation: ZHAO Xia, HUANG Peng, HU Ningjing, KONG Juanjuan, LIAO Renqiang, WANG Xiong. CHARACTERISTICS AND INFLUENCE FACTORS OF ELEMENT MIGRATION OF HYDROTHERMAL ALTERED ROCK IN EASTERN MANUS BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 86-101. doi: 10.16562/j.cnki.0256-1492.2017.03.009

东马努斯盆地热液蚀变火山岩元素迁移特征及影响因素

  • 基金项目:
    国家自然科学基金项目(41576049, 41666002);中国科学院前沿科学研究重点计划项目(QYZDB-SSW-SYS025)
详细信息
    作者简介: 赵霞(1990—),女,硕士,海洋地质专业,E-mail:491042505@qq.com
    通讯作者: 黄朋(1972—),博士,副研究员,主要从事海洋岩石学和海洋沉积学研究,E-mail:huangpeng@qdio.ac.cn
  • 中图分类号: P736.4

  • 蔡秋蓉编辑

CHARACTERISTICS AND INFLUENCE FACTORS OF ELEMENT MIGRATION OF HYDROTHERMAL ALTERED ROCK IN EASTERN MANUS BASIN

More Information
  • 本文选择东马努斯盆地的5个新鲜火山岩和1个蚀变火山岩作为研究对象,对样品进行全岩主微量及斜长石电子探针分析,并对蚀变岩石与新鲜火山岩之间的化学成分进行对比,深入探究了蚀变火山岩的元素迁移特征及影响因素。结果显示,蚀变火山岩的硫化物以黄铜矿、方铅矿和闪锌矿为主,为富Cu型热液硫化物。岩石蚀变区的SiO2含量极高,为硅化蚀变。蚀变岩石的化学成分约为同区玄武质安山岩和英安岩成分总含量的平均值,原岩可能为安山岩。在热液蚀变的过程中,蚀变岩石的质量增加了150%,其中元素Cu、Zn、Ga、Sr、Cd、Ba和Pb超强烈富集,Ti、V、Mn、Co、Ni、Mo和U强烈富集,Si和Fe中等富集;Sc、Cr、Nb、Ta、W和Bi轻微富集;Be和Ca超强烈亏损;Li、Na、Mg、K、Rb、REE和Y强烈亏损;Zr、Cs和Th轻微亏损;Al、P和Hf稳定不变。推测影响蚀变岩石元素迁移的因素有3种:成矿作用、交代作用(绿泥石化、硅化)和元素在流体中的活动性。

  • 加载中
  • 图 1  马努斯盆地区域地质图及采样位置

    Figure 1. 

    图 2  东马努斯火山岩样品手标本

    Figure 2. 

    图 3  东马努斯盆地火山岩全碱-硅图解

    Figure 3. 

    图 4  东马努斯盆地火山岩主量元素含量

    Figure 4. 

    图 5  球粒陨石标准化的东马努斯盆地火山岩REE分布曲线

    Figure 5. 

    图 6  东马努斯盆地蚀变岩石M3(15)的背散射照片

    Figure 6. 

    图 7  东马努斯盆地蚀变岩石M3(15)的热液硫化物Cu-Pb-Zn三角图

    Figure 7. 

    图 8  东马努斯火山岩的斜长石Or-An-Ab三角图

    Figure 8. 

    图 9  蚀变岩石M3(15)wy的等浓度图及其相应组分的亏损与富集柱状图

    Figure 9. 

    表 1  东马努斯火山岩的采样信息及岩相学特征

    Table 1.  Sample list and petrography of Eastern Manus Basin volcanic rocks

    sample 采样方式 采样位置 深度/m 岩石类型 简单的岩性特征
    经度(E) 纬度(S)
    M2(4) 水下机器人 151°40'19. 048" 3°43'37. 399" 1697 英安岩 样品新鲜,呈黑色,隐晶质结构,致密块状构造,无气泡;
    M3(15) 水下机器人 151°51'49. 919" 3°40'56. 167" 1892 蚀变岩石 样品被蚀变,呈灰色,致密块状构造,表面呈土状,可以闻到一股臭鸡蛋的味道。样品一边可见矿脉的截面,截面里肉眼可见看到黄铜矿、闪锌矿和白云母等;
    M5(13) 水下机器人 151°52'40. 623" 3°42'7. 707" 1941 玄武质安山岩 样品新鲜,呈黑色,隐晶质结构,致密块状构造,含有大量大小不一的气泡,具有冷凝边;
    M6(9) 水下机器人 151°52'39. 857" 3°42'21. 744" 1969 玄武质安山岩 样品新鲜,呈黑色,隐晶质结构,致密块状构造,含有大量小气泡;
    M7(5) 水下机器人 151°40'35. 161" 3°43'51. 583" 1789 英安岩 样品新鲜,呈黑色,隐晶质结构,致密块状构造,无气泡,表面破碎,覆盖有少量沉积物;
    M8(27) 水下机器人 151°41'15. 314" 3°43'37.622" 1657 英安岩 样品新鲜,呈黑色,隐晶质结构,致密块状构造,含有大量小气泡。
    下载: 导出CSV

    表 2  东马努斯火山岩全岩主量元素组成(%)

    Table 2.  Bulk major elements composition of Eastern Manus Basin magma

    样品 M5(13) M6(9) M2(4) M7(5) M8(27) M3(15)wy M3(15)km M3(15)原岩
    主量元素(wt%)
    SiO2 55. 17 55.45 68.82 67. 13 66.04 58.13 39.19 62.14
    TiO2 0. 59 0.58 0.55 0. 70 0. 72 0.69 0.61 0.56
    MgO 5. 54 5.30 0. 75 0.96 1.24 0.24 0.41 3.02
    Al2O3 15. 82 15. 77 13.88 14.26 14.31 6.04 3.21 14.83
    Fe2O3 2. 70 2.43 2.50 1.28 1 57 2.20 5.05 2. 47
    FeO 5.52 5.92 1.99 3. 74 3.88 4.19 2.64 3.96
    FeOT 8.22 8.35 4.49 5.02 5.45 6.39 7. 69 6.42
    MnO 5.54 5.3 0. 75 0.96 1.24 0.24 0.41 0.12
    CaO 9.28 9.22 2.69 3.18 3.52 0.15 0.11 5.96
    Na2O 2.88 2.89 4. 97 5. 07 5 0.41 0.01 3.93
    K2O 0. 73 0. 76 1.88 1 7 1.65 0.08 0.05 1.32
    P2O5 0. 17 0. 16 0.12 0.16 0.19 0.06 0.08 0.14
    LOI 1.39 1.3 1.64 1.58 1 7 1.81 10.54 1 47
    Total 105.33 105.08 100.54 100.72 101.06 74. 24 62.31 99.92
    FeOT/MgO 1.48 1.58 5.99 5.23 4.40 26.63 18. 76 2.13
    注:FeOT代表全铁含量;M3(15)wy代表样品M3(15)的围岩;M3(15)km代表样品M3(15)的矿脉;M3(15)原岩为推算结果。
    下载: 导出CSV

    表 3  东马努斯火山岩全岩微量元素组成

    Table 3.  Bulk trace elements composition of Eastern Manus Basin magma

    样品 M5(13) M6 (9) M2 (4) M7 (5) M8(27) M3(15)wy M3(15)km M3(15)原岩
    微量元素(x10-6
    Sc 10.538 28.811 29.339 12.581 13.816 10.686 7.783 9.234
    V 16. 754 270.275 284.085 24.080 33.624 271.635 346.538 309.087
    Cr < 0. 5 95.471 46.827 < 0. 5 3.148 16.879 10.454 13.667
    Co 4. 055 26.035 25.951 5.384 6.247 18.751 16.628 17.690
    Ni 1 245 35.422 29.264 1.679 4.905 18.641 14.304 16.472
    Cu 31.155 87.520 97.778 71.047 30.845 16235.154 112387.810 64311.482
    Zn 86.862 71.798 69.228 99.946 95.753 7193.249 2056.016 4624.632
    Ga 16.455 15.479 15.507 17.345 16.786 136.106 216.210 176.158
    Rb 28.721 9.934 10.241 25.955 24.720 1.801 1.094 1.448
    Cs 0.721 0.329 0.315 0.662 0.623 0.164 0.106 0.135
    Sr 252.551 391.212 427.111 294.302 306.962 1541.322 1496.099 1518.711
    Y 31.771 14.107 13.263 32.280 31.330 1.748 1.337 1.542
    Zr 129.978 50.109 49.809 124.033 115.830 31.292 30.960 31.126
    Nb 1.768 0.716 0.713 1.836 1.714 0.724 0.619 0.671
    Ba 355.942 176.473 177.627 325.591 310.712 2465.954 1290.038 1877.996
    Hf 3.526 1.357 1.359 3.337 3.097 0.927 0.859 0.893
    Ta 0.107 0.043 0.051 0.115 0.108 0.054 0.044 0.049
    Pb 5.842 2.604 2.672 5.475 5.133 127.038 125.871 126.455
    U 0.822 0.293 0.300 0.692 0.716 1.436 1.047 1.241
    Th 1.274 0.489 0.485 1.182 1.091 0.220 0.208 0.214
    Li 14.331 6.510 6.273 16.067 14.076 0.860 0.452 0.656
    Be 1.242 0.484 0.479 1.246 1.164 0.020 0.051 0.036
    Mo 1.526 0.789 0.651 1.498 1.331 2.916 18.532 10.724
    Cd 0.173 0.111 0.108 0.237 0.203 13.724 17.749 15.737
    W 0.247 0.111 0.095 0.219 0.191 0.089 0.122 0.105
    Bi 0. 047 0.035 0.022 0.042 0.043 0.023 0.049 0.036
    La 11 136 4.865 4.974 10.884 10.544 0.947 0.826 0.887
    Ce 25.175 11.177 11.414 24.671 24.039 1.925 1.660 1.792
    Pr 3. 512 1.642 1.664 3.482 3.485 0.256 0.226 0.241
    Nd 15.909 7.656 7.801 16.245 15.756 1.105 0.965 1.035
    Sm 4.196 2.083 2.090 4.306 4.278 0.277 0.214 0.245
    Eu 1.262 0.718 0.742 1.380 1.388 0.059 0.104 0.082
    Gd 4.062 2.053 1.996 4.040 4.122 0.282 0.203 0.242
    Tb 0.824 0.413 0.370 0.858 0.819 0.041 0.020 0.030
    Dy 4.905 2.337 2.153 5.009 4.841 0.262 0.164 0.213
    Ho 1.135 0.541 0.478 1.168 1.125 0.071 0.052 0.061
    Er 3.360 1.457 1.353 3.360 3.209 0.229 0.178 0.203
    Tm 0.542 0.237 0.219 0.555 0.533 0.044 0.037 0.041
    Yb 3.606 1.514 1.405 3.546 3.399 0.330 0.279 0.304
    Lu 0.557 0.237 0.219 0.565 0.545 0.056 0.048 0.052
    注:样品M3C15)的CzY Zii的含量太高,超出微量元素检测上限,存在较大测量误差;M3(15)wy代表样品M3C15)的围岩;M3(15)km代表样品M3(15)的矿脉;M3(15)原岩为推算结果。
    下载: 导出CSV

    表 4  东马努斯蚀变火山岩样品93(15)的电子探针分析结果

    Table 4.  EPMA results of altered rock M3(15) from Eastern Manus Basin

    样品 矿物号 SiO2 TO2 Al2O3 CrO3 FeO MnO MgO CaO Na2O K2O total 描述
    M3(15) 1-8 83.93 1.56 2.62 0.46 0.12 0 0.10 0.11 0.12 0.15 89.16 硅化
    M3(15) 1-9 83.68 0.04 2.55 0.03 0.15 0.02 0.11 0.06 0.15 0.16 86.96 硅化
    M3(15) 1-11 82.99 0.06 2.78 0.09 0.15 0.01 0.13 0.07 0.06 0.15 86.49 硅化
    M3(15) 3-1 83.42 0 2.75 0.07 0.06 0 0.03 1.07 0.51 0.16 88.07 硅化
    M3(15) 3-2 66.01 0.04 13.61 0.07 0.42 0.02 0.15 6.80 1.38 0.09 88.58 硅化
    M3(15) 4-7 76.27 0 6.88 0.06 0.20 0.02 0.07 2.86 0.88 0.13 87.39 硅化
    M3(15) 9-3 53.35 0.05 28.36 0.07 0.92 0 0.12 12.84 4.13 0.13 99.96 长石
    M3(15) 10-1 54.91 0.05 27.27 0.08 1.17 0.01 0.17 11.80 4.56 0.17 100.18 长石
    M3(15) 10-2 53.49 0.01 27.76 0.06 0.91 0.02 0.16 12.70 4.28 0.16 99.55 长石
    M3(15) 10-3 54.37 0.08 28.25 0.07 0.98 0 0.16 12.42 4.36 0.16 100.85 长石
    M3(15) 11-3 53.26 0.02 28.66 0.06 0.96 0 0.14 13.36 4.03 0.09 100.57 长石
    M3(15) 11-4 53.54 0.09 28.03 0.06 1.10 0.01 0.15 12.45 4.15 0.13 99.71 长石
    M3(15) 20-1 53.37 0.08 28.69 0.05 0.85 0 0.15 12.27 4.46 0.15 100.06 长石
    M3(15) 20-2 54.00 0.07 27.89 0.04 1.04 0 0.17 11.47 4.66 0.17 99.50 长石
    M3(15) 14-1 40.68 1.30 16.11 5.42 0.39 0.02 0.23 0.43 0.35 0.17 65.10 热液
    M3(15) 15-1 48.97 0.55 9.32 6.80 0.24 0.01 0.21 0.23 0.19 0.15 66.67 热液
    M3(15) 15-2 5. 17 0.08 1.33 9.50 0.42 0.02 0.10 0.96 0.20 0.10 17.87 热液
    M3(15) 17-1 51.27 0.03 29.11 0.07 0.75 0 0.19 13.79 3.31 0.12 98.64 热液
    M3(15) 18-1 40.97 0.07 1.90 15.60 0.77 0.05 0.09 0.58 0.35 0.31 60.69 热液
    样品 矿物号 Co Fe Pb Cu Zn S Cl As Ni Total 描述
    M3(15) 16-1 0.057 1.003 0 0.033 0.043 0.939 0.178 0.109 0.019 2.381 热液
    M3(15) 19-1 0.038 0.638 0.046 0.03 0.011 1.242 0.031 0 0 2.036 热液
    下载: 导出CSV

    表 5  东马努斯火山岩斜长石电子探针数据分析结果

    Table 5.  EPMA results of plagioclase from

    M3(15) M6(9) M2(4)
    矿物号 9-3 10-1 10-2 10-3 11-3 11-4 20-1 20-2 2-1 2-2 14-1 6-1 10-5 12-17 30-3 6-1 11-1 11-3 20-2 20-9 6-1 37-1
    SiO2 53.35 54.91 53.49 54.37 53.26 53.54 53.37 54.00 50.69 50.33 49.82 50.57 50.70 48.94 51.41 61.08 57.08 56.84 57.40 57.66 59.93 57.69
    TiO2 0.05 0.05 0.01 0.08 0.02 0.09 0.08 0.07 0.02 0.04 0.02 0.05 0 0.01 0 0.03 0.02 0.06 0.01 0.04 0.06 0
    AI2O3 28.36 27.27 27.76 28.25 28.66 28.03 28.69 27.89 29.52 29.82 30.80 29.57 29.67 30.53 30.82 24.61 26.17 26.12 25.88 25.31 24.17 25.69
    Cr2O3 0.07 0.08 0.06 0.07 0.06 0.06 0.05 0.04 0.01 0.02 0 0 0.01 0 0.06 0.02 0.01 0.03 0 0.02 0 0.04
    FeO 0.92 1.17 0.91 0.98 0.96 1.10 0.85 1.04 1.03 0.69 0.74 0.82 0.86 0.74 0.76 0.31 0.43 0.48 0.43 0.42 0.72 0.40
    MnO 0 0.01 0.02 0 0 0.01 0 0 0 0.02 0.02 0 0.01 0.05 0.06 0 0.01 0.02 0.02 0.02 0.02 0.02
    MgO 0.12 0.17 0.16 0.16 0.14 0.15 0.15 0.17 0.32 0.22 0.21 0.21 0.20 0.21 0.22 0.02 0.05 0.03 0.02 0.04 0.05 0.04
    CaO 12.84 11 80 12.70 12.42 13.36 12.45 12.27 11.47 14.79 15.15 15.36 15.02 15.15 16.09 14.60 6.61 8.82 8.97 8.85 7.87 6.99 8.22
    Na2O 4.13 4.56 4.28 4.36 4.03 4.15 4.46 4.66 2.61 2.80 2.64 2.79 2.78 2.15 3.11 7.52 6.42 6.33 6.43 6.87 7.53 6.68
    K2O 0.13 0.17 0.16 0.16 0.09 0.13 0.15 0.17 0.13 0.12 0.08 0.06 0.08 0.08 0.10 0.26 0.23 0.22 0.18 0.21 0.31 0.23
    总量 99.96 100.18 99.55 100.85 100.57 99.71 100.06 99.50 99.11 99.20 99.70 99.09 99.46 98.78 101.12 100.45 99.23 99.08 99.22 98.45 99.77 99.01
    Si 2.43 2.49 2.45 2.45 2.41 2.44 2.42 2.46 2.34 2.32 2.29 2.33 2.33 2.27 2.32 2.71 2.58 2.58 2.60 2.62 2.69 2.61
    Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    A1 1.52 1.46 1.50 1.50 1.53 1.51 1.54 1.50 1.60 1.62 1.67 1.61 1.61 1.67 1.64 1.29 1.40 1.40 1.38 1.36 1.28 1.37
    Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Fe 0.04 0.04 0.03 0.04 0.04 0.01 0.03 0.04 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.02 0.02 0.02 0.02 0.03 0.02
    Mn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    Mg 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0
    Ca 0.63 0.57 0.62 0.60 0.65 0.61 0.60 0.56 0.73 0.75 0.76 0.74 0.75 0.80 0.71 0.31 0.43 0.44 0.43 0.38 0.34 0.40
    Na 0.36 0.40 0.38 0.38 0.35 0.37 0.39 0.41 0.23 0.25 0.24 0.25 0.25 0.19 0.27 0.65 0.56 0.56 0.56 0.61 0.65 0.59
    K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
    阳离子总数 4.98 4.98 5.00 5.00 5.00 5.00 5.00 5.00 4.98 4.99 5.00 4.99 4.99 4.99 4.99 4.98 5.01 5.00 5.00 5.00 5.01 5.00
    An 0.63 0.58 0.62 0.61 0.64 0.62 0.60 0.57 0.75 0.74 0.76 0.75 0.75 0.80 0.72 0.42 0.43 0.43 0.43 0.38 0.33 0.40
    Ab 0.36 0.41 0.38 0.38 0.35 0.37 0.39 0.42 0.24 0.25 0.24 0.25 0.25 0.19 0.28 0.57 0.56 0.55 0.56 0.60 0.65 0.59
    Or 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
    斜长石牌号 63 58 62 61 63 62 60 57 75 74 76 75 75 80 72 42 43 43 43 38 33 40
    下载: 导出CSV
  • [1]

    Yang K H, Scott S D.Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J].Nature, 1996, 383(6599):420-423. doi: 10.1038/383420a0

    [2]

    Yang K H, Scott S D.Magmatic Fluids as a Source of Metals in Seafloor Hydrothermal Systems[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington, DC: American Geophysical Union, 2006: 163-184.

    [3]

    Sun W D, Arculus R J, Kamenetsky V S, et al.Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature, 2004, 431(7011):975-978. doi: 10.1038/nature02972

    [4]

    Simmons S F, Brown K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit[J].Science, 2006, 314(5797):288-291. doi: 10.1126/science.1132866

    [5]

    Reeves E P, Seewald J S, Saccocia P, et al.Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea[J].Geochimica et Cosmochimica Acta, 2011, 75(4):1088-1123. doi: 10.1016/j.gca.2010.11.008

    [6]

    de Ronde C E J. Fluid Chemistry and Isotopic Characteristics of Seafloor Hydrothermal Systems and Associated VMS Deposits: Potential for Magmatic Contributions[M]//Thompson J F H. Magmas, Fluids, and Ore Deposits. Canada: Mineralogical Association of Canada, 1995: 479-509.

    [7]

    Ishibashi J I, Urabe T. Hydrothermal Activity Related to Arc-backarc Magmatism in the Western Pacific[M]//Taylor B. Backarc Basins. New York, US: Springer, 1995: 451-495.

    [8]

    Kamenetsky V S, Binns R A, Gemmell J B, et al.Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralisation[J].Earth and Planetary Science Letters, 2001, 184(3-4):685-702. doi: 10.1016/S0012-821X(00)00352-6

    [9]

    Park S H, Lee S M, Kamenov G D, et al.Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea[J].Chemical Geology, 2010, 269(3-4):339-349. doi: 10.1016/j.chemgeo.2009.10.008

    [10]

    Sinton J M, Ford L L, Chappell B, et al.Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea[J].Journal of Petrology, 2003, 44(1):159-195. doi: 10.1093/petrology/44.1.159

    [11]

    Yang B J, Zeng Z G, Wang X Y, et al.Pourbaix diagrams to decipher precipitation conditions of Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field[J].Acta Oceanologica Sinica, 2014, 33(12):58-66. doi: 10.1007/s13131-014-0572-9

    [12]

    Zeng Z G, Chen S, Wang X Y, et al.Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin[J].Science China Earth Sciences, 2012, 55(12):2039-2048. doi: 10.1007/s11430-012-4536-7

    [13]

    Zeng Z G, Ouyang H G, Yin X B, et al.Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence[J].Journal of Asian Earth Sciences, 2012, 60: 130-146. doi: 10.1016/j.jseaes.2012.08.009

    [14]

    杨宝菊.东马努斯海盆PACMANUS热液区Si-Fe-Mn氧化物的形成机制及其对热液活动的指示[D].中国科学院(海洋研究所)硕士学位论文, 2015.

    YANG Baoju.The forming mechnism of Si-Fe-Mn oxides and implications for hydrothermal activity at the PACMANUS hydrothermal field, Eastern Manus Basin[D].Master's Thesis of Institute of Oceanology, Chinese Academy of Sciences, 2015.

    [15]

    杨宝菊, 曾志刚, 殷学博, 等.PACMANUS热液区Fe-Si-Mn羟基氧化物的成因及地球化学特征[J].海洋地质与第四纪地质, 2016, 36(3):69-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201603010

    YANG Baoju, ZENG Zhigang, YIN Xuebo, et al.The origin and geochemical characteristics of Fe-Si-Mn oxyhydroxides at PACMANUS hydrothermal field[J]. Marine Geology and Quaternary Geology, 2016, 36(3):69-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201603010

    [16]

    Beaudoin Y, Scott S D, Gorton M P, et al. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: a LA-ICP-MS study[J].Geochimica et Cosmochimica Acta, 2007, 71(17):4256-4278. doi: 10.1016/j.gca.2007.06.034

    [17]

    Beaudoin Y, Scott S D. Pb in the PACMANUS sea-floor hydrothermal system, eastern Manus Basin: numerical modeling of a magmatic versus leached origin[J].Economic Geology, 2009, 104(5):749-758. doi: 10.2113/gsecongeo.104.5.749

    [18]

    Craddock P R, Bach W, Seewald J S, et al.Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins[J].Geochimica et Cosmochimica Acta, 2010, 74(19):5494-5513. doi: 10.1016/j.gca.2010.07.003

    [19]

    Pašava J, Vymazalová A, Petersen S, et al. PGE distribution in massive sulfides from the PACMANUS hydrothermal field, eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits[J].Mineralium Deposita, 2004, 39(7):784-792. doi: 10.1007/s00126-004-0442-z

    [20]

    Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea[J].The Canadian Mineralogist, 2001, 39(4):957-978. doi: 10.2113/gscanmin.39.4.957

    [21]

    Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern Manus basin[J].Geochimica et Cosmochimica Acta, 2007, 71(6):1542-1552. doi: 10.1016/j.gca.2006.12.003

    [22]

    马瑶.东马努斯弧后盆地岩浆岩地球化学特征及其对热液活动中Cu的物质供给研究[D].中国科学院(海洋研究所)博士学位论文, 2016.

    MA Yao. Geochemistry of igneous rocks and material contribution of Cu to seafloor hydrothermal system in eastern Manus Basin[D].Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2016.

    [23]

    Fourre E, Jean-Baptiste P, Charlou J L, et al. Helium isotopic composition of hydrothermal fluids from the Manus back-arc Basin, Papua New Guinea[J].Geochemical Journal, 2006, 40(3):245-252. doi: 10.2343/geochemj.40.245

    [24]

    Kim J, Lee I, Lee K Y. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system[J].Journal of Geophysical Research, 2004, 109(B12), doi:10.1029/2003JB002912.

    [25]

    Roberts S, Bach W, Binns R A, et al. Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: the Sr and S isotope evidence[J].Geology, 2003, 31(9):805-808. doi: 10.1130/G19716.1

    [26]

    Wilckens F, Kasemann S A, Bach W, et al. Boron and lithium isotope compositions of acid-sulfate fluids from the Eastern Manus Basin, Papua New Guinea[C]//Goldschmidt, 2015.

    [27]

    Scott S D, Binns R A. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus basins of the western Pacific[J]. Geological Society, London, Special Publications, 1995, 87(1):191-205. doi: 10.1144/GSL.SP.1995.087.01.16

    [28]

    Gemmell J B, Binns R A, Parr J M. Submarine, high sulfidation alteration within DESMOS caldera, Manus Basin, PNG[C]//Mineral Deposits: Processes to Processing: Fifth Biennial SGA Meeting and the Tenth Quadrennial IAGOD Symposium. Rotterdam: Balkema, 1999: 503-506.

    [29]

    Lackschewitz K S, Devey C W, Stoffers P, et al. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea[J].Geochimica et Cosmochimica Acta, 2004, 68(21):4405-4427. doi: 10.1016/j.gca.2004.04.016

    [30]

    Taylor B. Bismarck Sea: evolution of a back-arc basin[J].Geology, 1979, 7(4):171-174. doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2

    [31]

    Phinney E J, Mann P, Coffin M F, et al. Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands Arc[J].Journal of Geophysical Research, 1999, 104(B9):20449-20466. doi: 10.1029/1999JB900169

    [32]

    Exon N F, Stewart W D, Sandy M J, et al. Geology and offshore petroleum prospects of the eastern New Ireland Basin, northeastern Papua New Guinea[J].BMR Journal of Australian Geology & Geophysics, 1986, 10(1):39-51.

    [33]

    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes[J].Journal of Petrology, 1998, 39(9):1641-1668. doi: 10.1093/petroj/39.9.1641

    [34]

    Martinez F, Taylor B. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin[J].Marine Geophysical Researches, 1996, 18(2-4):203-224. doi: 10.1007/BF00286078

    [35]

    Both R, Crook K, Taylor B, et al. Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea[J].EOS, Transactions American Geophysical Union, 1986, 67(21):489-490. doi: 10.1029/EO067i021p00489

    [36]

    Tufar W. Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus back-arc basin (Bismarck Sea, Papua New Guinea)[J].Mitteilungen der österreichischen Geologischen Gesellschaft, 1989, 82:183-210.

    [37]

    Lisitsyn A P, Crook K A W, Bogdanov Y A, et al. A hydrothermal field in the rift zone of the Manus Basin, Bismarck Sea[J].International Geology Review, 1993, 35(2):105-126. doi: 10.1080/00206819309465517

    [38]

    Binns R A, Scott S D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea[J].Economic Geology, 1993, 88(8):2226-2236. doi: 10.2113/gsecongeo.88.8.2226

    [39]

    Binns R A, Barriga F J A S, Miller D J. Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, eastern Manus basin, Papua new guinea[C]//Proceedings of the Ocean Drilling Program Scientific Results.College Station, TX: Ocean Drilling Program, 2007: 1-71.

    [40]

    Gamo T, Sakai H, Ishibashi J, et al. Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea: CH4, Mn, Al and ph anomalies[J].Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 1993, 40(11-12):2335-2349. doi: 10.1016/0967-0637(93)90108-F

    [41]

    Gamo T, Okamura K, Charlou J L, et al. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea[J].Geology, 1997, 25(2):139-142. doi: 10.1130/0091-7613(1997)025<0139:AASRHF>2.3.CO;2

    [42]

    Gamo T, Ishibashi J, Tsunogai U, et al. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the Western Pacific[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington D C: American Geophysical Union, 2006: 147-161.

    [43]

    Auzende J M, Hashimoto J, Fiala-Médioni A, et al. In situ geological and biological study of two hydrothermal zones in the Manus Basin (Papua New Guinea)[J].Comptes Rendus de l'Académie des Sciences Séries IIA Earth and Planetary Sciences, 1997, 325(8):585-591.

    [44]

    Binns R A, Scott S D, Gemmell J B, et al. The SuSu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea[J].EOS, Transactions American Geophysical Union, 1997, 78:46. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-gsecongeo.102.1.55/

    [45]

    Auzende J M, Ishibashi J, Beaudoin Y, et al. The eastern and western tips of Manus Basin (Papua, New Guinea) explored by submersible: MANAUTE cruise[J].Comptes Rendus de l'Académie des Sciences Séries IIA Earth and Planetary Sciences, 2000, 331(2):119-126.

    [46]

    Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta, 1999, 63(5):627-643. doi: 10.1016/S0016-7037(99)00024-1

    [47]

    黄朋.冲绳海槽火山活动及其构造意义[D].中国科学院(海洋研究所)博士学位论文, 2005.

    HUANG Peng. The volcanic activities and their implications in the Okinawa Trough[D]. Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2005.

    [48]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4

    [49]

    张德玉, 陈穗田, 王冠荣, 等.马里亚纳海槽热液硅质烟囱矿物学及地球化学研究[J].海洋学报, 1992, 14(4):61-68. doi: 10.1007/BF02677081

    ZHANG Deyu, CHEN Suitian, WANG Guanrong, et al.Mineralogy and geochemistry characteristic of silica chimney from hydrotherm area in Mariana Trench[J].Acta Oceanologica Sinica, 1992, 14(4):61-68. doi: 10.1007/BF02677081

    [50]

    曾志刚, 陈代庚, 殷学博, 等.东太平洋海隆13° N附近热液硫化物中的元素, 同位素组成及其变化[J].中国科学D辑:地球科学, 2009, 39(12):1780-1794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200912014

    ZENG Zhigang, CHEN Daigeng, YIN Xuebo, et al.Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N[J].Science China Earth Sciences, 2010, 53(2):253-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200912014

    [51]

    陈永权, 蒋少涌, 周新源, 等.塔里木盆地寒武系层状硅质岩与硅化岩的元素, δ30Si, δ18O地球化学研究[J].地球化学, 2010, 39(2):159-170.

    CHEN Yongquan, JIANG Shaoyong, ZHOU Xinyuan, et al. δ30Si, δ18O and elements geochemistry on the bedded siliceous rocks and cherts in dolostones from Cambrian strata, Tarim Basin[J].Geochimica, 2010, 39(2):159-170.

    [52]

    赵珊茸.结晶学及矿物学[M].北京:高等教育出版社, 2004:385-392.

    ZHAO Shanrong. Crystallography and Mineralogy[M].Beijing: High Education Press, 2004:385-392.

    [53]

    祁冬梅, 周汉文, 宫勇军, 等.岩石热液蚀变作用过程元素的活动性——河南祁雨沟金矿Ⅳ号岩体蚀变花岗斑岩的研究[J].岩石学报, 2015, 31(9):2655-2673. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    QI Dongmei, ZHOU Hanwen, GONG Yongjun, et al. Element mobility during the fluid-rock hydrothermal alteration: evidence from altered porphyritic granite in Ⅳ pipe of the Qiyugou gold deposit, Henan Province[J].Acta Petrologica Sinica, 2015, 31(9):2655-2673. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    [54]

    Grant J A. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration[J].Economic Geology, 1986, 81(8):1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    [55]

    Costa U R, Barnett R L, Kerrich R. The Mattagami Lake Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, 18O/16O, and mineral chemistry[J].Economic Geology, 1983, 78(6):1144-1203. doi: 10.2113/gsecongeo.78.6.1144

    [56]

    Gong Q J, Deng J, Yang L Q, et al. Behavior of major and trace elements during weathering of sericite-quartz schist[J].Journal of Asian Earth Sciences, 2011, 42(1-2):1-13. doi: 10.1016/j.jseaes.2011.03.003

    [57]

    Troll V R, Sachs P M, Schmincke H U, et al. The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study[J].Contributions to Mineralogy and Petrology, 2003, 145(6):730-741. doi: 10.1007/s00410-003-0475-9

    [58]

    Hynes A. Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, SE Quebec[J].Contributions to Mineralogy and Petrology, 1980, 75(1):79-87. doi: 10.1007/BF00371891

    [59]

    陈子琪, 蒋少涌, 徐耀明, 等.江西九瑞矿集区郎君山第三纪玄武岩的成因与岩浆演化:来自辉石和长石的矿物学证据[J].岩石学报, 2015, 31(3):686-700. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    CHEN Ziqi, JIANG Shaoyong, XU Yaoming, et al. Petrogenesis and magma evolution of Tertiary basalts from the Langjunshan area in the Jiurui mineralization district, Jiangxi Province: evidence from pyroxene and feldspar[J].Acta Petrologica Sinica, 2015, 31(3):686-700. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    [60]

    MacLean W H, Kranidiotis P. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec[J].Economic Geology, 1987, 82(4):951-962. doi: 10.2113/gsecongeo.82.4.951

    [61]

    刘英俊.元素地球化学[M].北京:科学出版社, 1984.

    LIU Yingjun. Geochemistry of Elements[M].Beijing: Science Press, 1984.

    [62]

    杨超, 唐菊兴, 王艺云, 等.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究[J].矿床地质, 2014, 33(6): 1287-1305. doi: 10.3969/j.issn.0258-7106.2014.06.009

    YANG Chao, TANG Juxing, WANG Yiyun, et al. Fluid and geological characteristics researches of Southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet[J]. Mineral Deposits, 2014, 33(6): 1287-1305. doi: 10.3969/j.issn.0258-7106.2014.06.009

    [63]

    薛春纪, 赵晓波, 莫宣学, 等.西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J].地质学报, 2014, 88(12):2490-2531. doi: 10.3969/j.issn.0001-5717.2014.12.025

    XUE Chunji, ZHAO Xiaobo, MO Xuanxue, et al. tectonic-metallogenic evolution of Western Tianshan Giant Au-Cu-Zn-Pb metallogenic belt and prospecting orietation[J].Acta Geologica Sinica, 2014, 88(12):2490-2531. doi: 10.3969/j.issn.0001-5717.2014.12.025

    [64]

    Humphris S E, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts[J].Geochimica et Cosmochimica Acta, 1978, 42(1):127-136. doi: 10.1016/0016-7037(78)90222-3

    [65]

    Juteau T, Noack Y, Whitechurch H. Mineralogy and geochemistry of alteration products in holes 417a and 417d basement samples (Deep Sea Drilling Project Leg 51)[J].1979, 53(2): 1273-1297.

    [66]

    Ludden J N, Thompson G. An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt[J].Earth and Planetary Science Letters, 1979, 43(1):85-92. doi: 10.1016/0012-821X(79)90157-2

    [67]

    Morgan J W, Wandless G A. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control[J].Geochimica et Cosmochimica Acta, 1980, 44(7):973-980. doi: 10.1016/0016-7037(80)90286-0

    [68]

    Exley R A. Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems[J].Earth and Planetary Science Letters, 1980, 48(1):97-110. doi: 10.1016/0012-821X(80)90173-9

    [69]

    Vidal P, Cocherie A, Le Fort P. Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal)[J].Geochimica et Cosmochimica Acta, 1982, 46(11):2279-2292. doi: 10.1016/0016-7037(82)90201-0

    [70]

    Campbell I H, Coad P, Franklin J M, et al. Rare earth elements in volcanic rocks associated with Cu-Zn massive sulphide mineralization: a preliminary report[J].Canadian Journal of Earth Sciences, 1982, 19(3):619-623. doi: 10.1139/e82-049

    [71]

    Campbell I H, Lesher C M, Coad P, et al. Rare-earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits[J].Chemical Geology, 1984, 45(3-4):181-202. doi: 10.1016/0009-2541(84)90036-6

    [72]

    Lottermoser B G. Rare earth element study of exhalites within the Willyama supergroup, Broken Hill Block, Australia[J].Mineralium Deposita, 1989, 24(2):92-99. doi: 10.1007/BF00206309

  • 加载中

(9)

(5)

计量
  • 文章访问数:  2757
  • PDF下载数:  76
  • 施引文献:  0
出版历程
收稿日期:  2016-07-18
修回日期:  2016-11-22
刊出日期:  2017-06-28

目录