高精度电缆采集系统在南黄海崂山隆起油气调查中的应用

姚刚. 高精度电缆采集系统在南黄海崂山隆起油气调查中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3): 152-161. doi: 10.16562/j.cnki.0256-1492.2018.03.015
引用本文: 姚刚. 高精度电缆采集系统在南黄海崂山隆起油气调查中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3): 152-161. doi: 10.16562/j.cnki.0256-1492.2018.03.015
YAO Gang. Application of high precision marine seismic streamer acquisition system to Laoshan uplift of South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 152-161. doi: 10.16562/j.cnki.0256-1492.2018.03.015
Citation: YAO Gang. Application of high precision marine seismic streamer acquisition system to Laoshan uplift of South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 152-161. doi: 10.16562/j.cnki.0256-1492.2018.03.015

高精度电缆采集系统在南黄海崂山隆起油气调查中的应用

  • 基金项目:
    国家科技重大专项项目27课题2“东海深层大型气田勘探评价技术”(2016ZX0027002)
详细信息
    作者简介: 姚刚(1984—),男,工程师,主要从事海上地震采集处理相关工作,E-mail:heroblood@163.com
  • 中图分类号: P738

  • 蔡秋蓉编辑

Application of high precision marine seismic streamer acquisition system to Laoshan uplift of South Yellow Sea

  • 南黄海盆地崂山隆起区中、古生界地层发育,为南黄海盆地有利勘探区域。但由于区域性的高速屏蔽层的存在,导致地震波能量难以下传,中-古生界地震成像效果较差,信噪比低。针对该问题,选取高精度地震采集技术,采用国产“海亮”高精度电缆采集系统在崂山隆起区域实施了地震采集,以达到增加空间采样率的目的,同时优化采集参数,提高目的层成像效果。实践表明,该方案明显提高了南黄海崂山隆起地区地震资料的品质,中-古生界成像获得改善,为该区中-古生界勘探提供了优质的基础资料。

  • 加载中
  • 图 1  崂山隆起现有地震测线

    Figure 1. 

    图 2  研究思路

    Figure 2. 

    图 3  南黄海崂山隆起地质模型

    Figure 3. 

    图 4  常规采集(上)与高精度采集(下)空间采样对比

    Figure 4. 

    图 5  照明分析

    Figure 5. 

    图 6  两种震源模拟远场子波振幅特征对比

    Figure 6. 

    图 7  两种震源子波频谱特征对比

    Figure 7. 

    图 8  常规拖缆与高精度电缆系统采集单炮频谱对比分析

    Figure 8. 

    图 9  炮域去噪结果对比分析

    Figure 9. 

    图 10  常规拖缆与高精度电缆成果剖面对比

    Figure 10. 

    图 11  常规拖缆与高精度电缆目的层频谱对比

    Figure 11. 

    表 1  “海亮”电缆采集系统各项技术指标与其他采集系统比较

    Table 1.  Technical Specifications of "HQI-Seis"cable acquisition system and comparison other system

    电缆型号 DIGI RDA ALS Q-Marine 海亮
    电缆长度(m) 99.7 74.5 150 100 100
    电缆直径(cm) 5.3 6.3 5.5 4.8 5.6
    数据传输缆 电缆32 Mb/s 电缆 双电缆 双光缆 电缆240Mbps
    道间距(m) 12.5 12.5 12.5 3.125 3.125
    电缆道数 8 6 12 32 32
    每道检波器数 8 8 16 1 1
    检波器灵敏度 19V/bar 20V/bar 21V/bar 6.83v/bar 20v/bar
    A/D △-Σ24bit △-Σ24bit △-Σ24bit △-Σ24bit △-Σ24bit
    数字包道数 16 12 60 - 32
    前放增益(dB) 0, 12, 24, 36 12, 24, 36, 48 - - 0, 6, 12, 24
    动态范围(dB) > 114 > 114 > 114 > 115 > 115
    谐波畸变 < -106dB < -105dB - < -95dB < -106dB
    下载: 导出CSV

    表 2  不考虑电缆深度情况下震源子波特征对比

    Table 2.  The characteristics of the source wavelet are not considered in the case of streamer depth

    震源
    深度/m
    电缆
    深度/m
    主峰值/
    barm
    峰-峰值/
    barm
    气泡比 主频/
    Hz
    有效
    频带/Hz
    4 0 91.1 175.7 38.9 68 7~135
    5 0 85.3 178.4 29.7 65 7~115
    6 0 89.7 186.7 24.6 55 6~99
    7 0 91.3 190.1 20.4 47 6~88
    8 0 87.4 186.7 17.6 45 6~78
    9 0 86.9 186.7 15.0 40 6~72
    10 0 89.0 185.3 14.3 37 6~65
    下载: 导出CSV

    表 3  电缆沉放深度4~12m震源子波特征对比

    Table 3.  Streamer sinking depth from 4m to 15m source wavelet characteristics contrast

    震源
    深度/m
    电缆
    深度/m
    主峰值/
    bam
    峰-峰值/
    bam
    气泡比
    7 4 28.3 46.9 3.0
    7 5 34.4 57 2.7
    7 6 39.9 66 2.4
    7 7 44.8 73.9 2.3
    7 8 49.0 80.4 2.1
    7 9 52.2 85.5 2.1
    7 10 54.7 89.1 2.1
    7 11 56.3 91.3 2.1
    7 12 34.4 91.3 2.1
    下载: 导出CSV

    表 4  主要采集参数对比

    Table 4.  Main acquisition parameters

    常规二维 高密二维
    震源容量(cuin) 5460 5040
    震源深度(m) 7 7
    炮间距(m) 37.5 37.5
    电缆长度(m) 7050 6500
    电缆深度(m) 10 10
    道间距(m) 12.5 3.125
    接收道数 564 2080
    下载: 导出CSV
  • [1]

    吴志强.南黄海中部隆起海相地层油气地震勘探关键技术研究[D].中国海洋大学博士学位论文, 2009.http://cdmd.cnki.com.cn/article/cdmd-10423-2009162539.htm

    WU Zhiqiang. The seismic techniques for exploring marine facies stratigraphic hydrocarbon entrapped in the Middle uplift of the South Yellow Sea [D]. Doctor Dissertation of Ocean University of China, 2009.

    [2]

    汪正江, 张锦泉, 陈洪德.鄂尔多斯盆地晚古生代陆源碎屑沉积源区分析[J].成都理工学院学报, 2001, 28(1): 7-12. doi: 10.3969/j.issn.1671-9727.2001.01.002

    WANG Zhengjiang, ZHANG Jinquan, CHEN Hongde. Study of the dispositional provenance of the terrigenous detritus in ordos basin in late paleozoic Era [J]. Journal of Chengdu University of Technology, 2001, 28(1): 7-12. doi: 10.3969/j.issn.1671-9727.2001.01.002

    [3]

    欧阳凯, 张训华, 李刚.南黄海中部隆起地层分布特征[J].海洋地质与第四纪地质, 2009, 29(1): 59-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200901010

    OUYANG kai, ZHANG Xunhua, LI gang. Characteristics of stratigraphic distribution in the Middle uplift of South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(1): 59-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200901010

    [4]

    温珍河, 张金川.南黄海盆地找油新方向的探讨[J].海洋地质与第四纪地质, 1989, 9(2): 27-34.

    WEN Zhenhe ZHANG Jinchuan. A discussion about new directions for oil finding in Southern Yellow Sea basin of China [J]. Marine Geology & Quaternary Geology, 1989, 9(2): 27-34.

    [5]

    龚建明, 陈建文, 何拥军, 等.低层大气烃类检测预测南黄海盆地油气远景[J].海洋地质与第四纪地质, 2006, 26(1): 75-79. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200601012

    GONG Jianming, CHEN Jianwen, HE Yongjun, et al. Hydrocarbon test in lower-layer atmosphere to predict hydrocarbon potential of South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2006, 26(1): 75-79. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200601012

    [6]

    熊忠, 张敏强, 高顺莉, 等.南黄海中、古生界地震波场反射特征模拟与采集技术攻关[J].地球物理学进展, 2016, 31(5): 2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    XIONG Zhong, ZHANG Minqiang, GAO Shunli, et al. Seismic wave field simulation for reflection characteristics and technology study on seismic acquisition of Mesozoic-Paleozoic in the South Yellow Sea [J]. Progress in Geophysics, 2016, 31(5): 2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    [7]

    吴志强, 童思友, 闫桂京, 等.广角地震勘探技术及在南黄海古近系油气勘探中的应用前景[J].海洋地质动态, 2006, 22(4): 26-30. doi: 10.3969/j.issn.1009-2722.2006.04.008

    WU Zhiqiang, TONG Siyou, YAN Guijing, et al. Wide-angle seismic exploration technique and its application to Paleogene petroleum explorations in the South Yellow Sea [J]. Marine Geology Letters, 2006, 22(4): 26-30. doi: 10.3969/j.issn.1009-2722.2006.04.008

    [8]

    吴志强, 吴时国, 童思友, 等.基于南黄海海相油气勘探的地震采集技术研究[J].地球物理学报, 2011, 54(4): 1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    WU Zhiqiang, WU Shiguo, TONG Siyou, et al. A study on seismic acquisition basic on marine carbonate hydrocarbon exploration in the South Yellow Sea [J]. Chinese Journal of Geophysics, 2011, 54(4): 1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    [9]

    吴志强, 肖国林, 董贺平, 等.基于南黄海盆地海相油气的海洋立体宽线地震勘探技术设想[J].海洋地质前沿, 2012, 28(8): 56-60. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201208011.htm

    WU Zhiqiang, XIAO Guolin, DONG Heping, et al. A suggestion of marine tridimensional wide line seismic technique for exploration of marine carbonate reservoir in the South Yellow Sea basin [J]. Marine Geology Frontiers, 2012, 28(8): 56-60. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201208011.htm

    [10]

    吴志强, 刘丽华, 肖国林, 等.南黄海海相残留盆地综合地球物理调查进展与启示[J].地球物理学进展, 2015, 30 (6): 2945-2954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201506064

    WU Zhiqiang, LIU Lihua, XIAO Guolin, et al. Progress and enlightenment of integrated geophysics exploration of marine residual basin in the South Yellow Sea [J]. Progress in Geophysics, 2015, 30(6): 2945-2954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201506064

    [11]

    唐松华, 李斌, 张异彪, 等.立体阵列组合技术在南黄海盆地的应用[J].海洋地质前沿, 2013, 29(5): 64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

    TANG Songhua, LI Bin, ZHANG Yibiao, et al. Application of tridimensional delayed excitation air-gun array in the South Yellow Sea basin [J]. Marine Geology Frontiers, 2013, 29(5): 64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

    [12]

    张雷, 魏赟, 高顺莉, 等.南黄海中、古生界地震反射特征模拟分析与勘探对策[J].中国石油勘探, 2013, 18(2): 26-29. doi: 10.3969/j.issn.1672-7703.2013.02.005

    ZHANG Lei, WEI Yun, GAO Shunli, et al. Analog analysis and exploration solution of seismic reflection characteristics of Mesozoic-Paleozoic in South Yellow Sea [J]. China Petroleum Exploration, 2013, 18(2): 26-29. doi: 10.3969/j.issn.1672-7703.2013.02.005

    [13]

    高顺莉, 徐发.浅海区古生界海底电缆拟宽线地震采集方法[J].地球物理学进展, 2014, 29(5): 2382-2387. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201405058.htm

    GAO Shunli, XU Fa. OBC pseud wide line acquisition method for Paleozoic in shallow sea area [J]. Progress in Geophysics, 2014, 29(5): 2382-2387. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201405058.htm

    [14]

    熊忠, 张敏强, 高顺莉, 等.南黄海中、古生界地震波场反射特征模拟与采集技术攻关[J].地球物理学进展, 2016, 31(5): 2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    XIONG Zhong, ZHANG Minqiang, GAO Shunli, et al. Seismic wave field simulation for reflection characteristics and technology study on seismic acquisition of Mesozoic-Paleozoic in the South Yellow Sea [J]. Progress in Geophysics, 2016, 31(5): 2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    [15]

    吕公河.高精度地震勘探采集技术探讨[J].油气地球物理, 2004, 2(1): 6-10. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt200503010

    LV Gonghe. Discussion of high-precision seismic prospecting acquisition technology [J]. Petroleum Geophysics, 2004, 2(1): 6-10. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt200503010

    [16]

    张德生, 杨会朋.文明寨地区高精度地震采集方法与技术[J].中国西部科技, 2005(5): 24-25. doi: 10.3969/j.issn.1671-6396.2005.05.016

    ZHANG Desheng, YANG Huipeng. High accuracy seismic acquisition method and technology in Wenmingzhai area [J]. Science and Technology of West China, 2005(5): 24-25. doi: 10.3969/j.issn.1671-6396.2005.05.016

    [17]

    王乃建.塔北地区高密度地震采集技术应用研究[D].中国石油大学硕士学位论文, 2008.

    WANG Naijian. Application of high density seismic acquisition technology in north area of Tarim [D]. Master Dissertation of China University of Petroleum, 2008.

    [18]

    吕公河, 张光德, 尚应军, 等.胜利油田高精度三维地震采集技术实践与认识[J].石油物探, 2010, 49(6): 562-572. doi: 10.3969/j.issn.1000-1441.2010.06.006

    LV Gonghe, ZHANG Guangde, SHANG Yingjun, et al. Research and application of high-precision 3D seismic data acquisition technology in Shengli oilfield [J]. Geophysical Prospecting for Petroleum, 2010, 49(6): 562-572. doi: 10.3969/j.issn.1000-1441.2010.06.006

    [19]

    Garden M, Bunting T, Ng S, et al. Imaging gas reservoirs of Pinghu field, east China Sea[J]. Offshore, 2008, 68(7): 56-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa3a8cb02270e58f8ed2ba033edd583b

    [20]

    张亚斌, 施荣富, 姚刚. Q-Marine技术和特色处理技术在东海海域油气区的应用[J].石油天然气学报, 2013, 35(6): 47-52. doi: 10.3969/j.issn.1000-9752.2013.06.009

    ZHANG Yabin, SHI Rongfu, YAO Gang. Application of Q-marine seismic exploration technology and specialized processing technology in Donghai oil and gas area [J]. Journal of Oil and Gas Technology, 2013, 35(6): 47-52. doi: 10.3969/j.issn.1000-9752.2013.06.009

    [21]

    陈昌旭, 张剑锋, 李江, 等.拖缆高密度高分辨地震资料采集处理技术的探讨与应用[C]//中国石油学会2015年物探技术研讨会论文集.宜昌: 中国石油学会石油物探专业委员会, 2015: 664-668.

    CHEN Changxu, ZHANG Jianfeng, LI Jiang, et al. Discussion and application of high density and high resolution seismic data acquisition and processing technology for streamer [C]//2015 Seminar on Geophysical Prospecting Technology. Yichang, 2015: 664-668.

    [22]

    陆基孟.地震勘探原理[M].东营:中国石油大学出版社, 1990: 23-33.

    LU Jimeng. Principle of Seismic Exploration [M]. Dongying: China University of Petroleum Press, 1990: 23-33.

    [23]

    Ongkiehong L, Askin H J. Towards the universal seismic acquisition technique[J]. First Break, 1988, 6(2): 46-63.

    [24]

    杨振武.海洋石油地震勘探:资料采集与处理[M].北京:石油工业出版社, 2012: 33-40.

    YANG Zhenwu. Offshore Oil Seismic Exploration [M]. Beijing: Petroleum Industry Press, 2012: 33-40.

    [25]

    鲁军.海洋深水区深层高分辩率地震勘探技术及应用研究[D].西南石油学院硕士学位论文, 2005: 24-30.

    LU Jun. Study on deep high resolution seismic prospecting technology and its application in deep water [D]. Master Dissertation of Southwest Petroleum University, 2005: 24-30.

    [26]

    朱书阶.气枪震源子波特征及应用研究[J].勘探地球物理进展, 2008, 31(4): 265-269. http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200804005

    ZHU Shujie. Wavelet characteristics of air gun source and its effect [J]. Progress in Exploration Geophysics, 2008, 31(4): 265-269. http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200804005

    [27]

    钟明睿, 朱江梅, 杨薇, 等.震源及电缆沉放深度对海上地震资料的影响[J].物探与化探, 2012, 36(1): 78-83, 88. http://d.old.wanfangdata.com.cn/Periodical/wtyht201201016

    ZHONG Mingrui, ZHU Jiangmei, YANG Wei, et al. The impact of seismic source and cable sinking depth on marine seismic data [J]. Geophysical and Geochemical Exploration, 2012, 36(1): 78-83, 88. http://d.old.wanfangdata.com.cn/Periodical/wtyht201201016

    [28]

    王守君.海底电缆地震技术优势及在中国近海的应用效果[J].中国海上油气, 2012, 24(2): 9-12, 35. doi: 10.3969/j.issn.1673-1506.2012.02.002

    WANG Shoujun. Technical advantages of OBC seismic survey and its application effects offshore China [J]. China Offshore Oil and Gas, 2012, 24(2): 9-12, 35. doi: 10.3969/j.issn.1673-1506.2012.02.002

    [29]

    王守君, 吴秋云, 朱耀强, 等.海上单检波器高密度拖缆地震采集系统技术特点与测试效果[J].中国海上油气, 2012, 24(6): 6-11. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201206002

    WANG Shoujun WU Qiuyun, ZHU Yaoqiang, et al. Technical features of a marine high-density seismic acquisition system with single geophone by streamer and its testing effects [J]. China Offshore Oil and Gas, 2012, 24(6): 6-11. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201206002

  • 加载中

(11)

(4)

计量
  • 文章访问数:  1536
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2018-02-05
修回日期:  2018-04-11
刊出日期:  2018-06-28

目录