探索晚中新世大洋碳位移与生产力的关系

李方舟, 田军. 探索晚中新世大洋碳位移与生产力的关系[J]. 海洋地质与第四纪地质, 2018, 38(4): 143-154. doi: 10.16562/j.cnki.0256-1492.2018.04.012
引用本文: 李方舟, 田军. 探索晚中新世大洋碳位移与生产力的关系[J]. 海洋地质与第四纪地质, 2018, 38(4): 143-154. doi: 10.16562/j.cnki.0256-1492.2018.04.012
LI Fangzhou, TIAN Jun. Exploring the relationship between Late Miocene ocean carbon shift and productivity[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 143-154. doi: 10.16562/j.cnki.0256-1492.2018.04.012
Citation: LI Fangzhou, TIAN Jun. Exploring the relationship between Late Miocene ocean carbon shift and productivity[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 143-154. doi: 10.16562/j.cnki.0256-1492.2018.04.012

探索晚中新世大洋碳位移与生产力的关系

  • 基金项目:
    国家杰出青年科学基金“古海洋学” (41525020);国家自然科学基金“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051);上海市优秀学术带头人“新近纪南海碳酸盐补偿深度变化及其古气候意义” (A类, 16XD1403000)
详细信息
    通讯作者: (共同通讯作者)李方舟(1994—), 男, 硕士研究生, 海洋地质专业, E-mail:1632939@tongji.edu.cn 田军(1974—), 男, 教授, 从事古海洋学与古环境变化研究, E-mail:tianjun@tongji.edu.cn
  • 中图分类号: P736.2

  • 周立君编辑

Exploring the relationship between Late Miocene ocean carbon shift and productivity

More Information
  • LMOCS (Late Miocene Ocean Carbon Shift)是距今最近的一次全球范围内表层水和底层水的碳同位素(δ13C)同步负偏事件。生物泵假说是解释LMOCS的经典理论之一。当生物勃发时, 生物泵可促进海水(δ13C)的分馏, 最终导致底栖有孔虫壳体的(δ13C)偏负。然而这一推论正被越来越多的证据所质疑。古生物和地球化学两大类替代性指标可重建过去生产力的变化、生物勃发以及生物泵的作用和效率。时间上, 大部分生物勃发事件比LMOCS开始更早而结束更晚。空间上, LMOCS已被证明具有全球性, 而生物勃发则不是。而且, 表层水和底层水的同向变化也和生物泵原理相悖。因此我们认为除生产力的变化之外, 还有其他导致LMOCS的原因。未来有待从全球水碳循环的集成研究、大气CO2的精确重建、计算机气候模拟等方面揭示LMOCS的驱动机制。

  • 加载中
  • 图 1  pCO2重建、晚中新世大洋碳位移和生物勃发

    Figure 1. 

    图 2  基于多种指标的生物勃发事件

    Figure 2. 

    图 3  生物泵示意图

    Figure 3. 

    表 1  古生产力的代用指标及举例

    Table 1.  The proxies and examples of paleoproductivity

    举例 参考文献



    生物标志物绝对含量/相对丰度 颗石藻的相对丰度 Molfino和McIntyre[35]
    有机碳含量与生产力的经验公式 Müller和Suess[36]
    生物沉积物 沉积物-水界面有机碳通量和沉积物表层
    Brummer和Van Eijden[37]
    CaCO3含量之间的转换关系
    堆积速率 底栖有孔虫堆积速率 Herguera和Berger[38]
    属种组合法 底栖有孔虫内生种和外生种的比值 Jorissen等[39]





    沉积组分元素比值 生源Ba/黏土矿物Ti Murray等[40]
    蛋白石/黏土; 蛋白石/BaSO4 Lyle和Baudalf[22]
    痕量/微量元素 硫酸钡与有机碳通量的定量关系 Dymond等[41]
    营养元素 大洋活性磷 Föllmi[42]
    堆积速率 重晶石与生物Ba Averyt和Paytan[43]
    同位素 表生与内生有孔虫碳同位素差值 Stott等[44]
    快速沉积环境下的氮同位素 Higginson等[45]
    下载: 导出CSV
  • [1]

    Keigwin L D.Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the east equatorial and central North Pacific Ocean[J].Earth and Planetary Science Letters, 1979, 45 (2) :361-382. doi: 10.1016/0012-821X(79)90137-7

    [2]

    Haq B U, Worsley T R, Burckle L H, et al.Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events[J].Geology, 1980, 8 (9) :427-431. doi: 10.1130/0091-7613(1980)8<427:LMMCSA>2.0.CO;2

    [3]

    Grant K M, Dickens G R.Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene-early Pliocene biogenic bloom[J].Palaeogeography Palaeoclimatology Palaeoecology, 2002, 187 (1) :61-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e7c9d2dc7ef5617b3e5b770f7c3b7ea

    [4]

    Dickens G R, Owen R M.The Latest Miocene-Early Pliocene biogenic bloom:a revised Indian Ocean perspective[J].Marine Geology, 1999, 161 (1) :75-91. doi: 10.1016/S0025-3227(99)00057-2

    [5]

    Diester-Haass L, Billups K, Emeis K C.Late Miocene carbon isotope records and marine biological productivity:Was there a (dusty) link?[J].Paleoceanography, 2006, 21 (4) :247-257. http://cn.bing.com/academic/profile?id=9a5de05ce66511da94c3de05c68ca3fb&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    Drury A J, John C M, Shevenell A E.Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene:New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations[J].Paleoceanography, 2016, 31 (1) :167-184. doi: 10.1002/2015PA002881

    [7]

    Hodell D A, Curtis J H, Sierro F J, et al.Correlation of Late Miocene to Early Pliocene sequences between the Mediterranean and North Atlantic[J].Paleoceanography, 2001, 16 (2) :164-178. doi: 10.1029/1999PA000487

    [8]

    Drury A J, Westerhold T, Frederichs T, et al.Late Miocene climate and time scale reconciliation:Accurate orbital calibration from a deep-sea perspective[J].Earth and Planetary Science Letters, 2017, 475:254-266. doi: 10.1016/j.epsl.2017.07.038

    [9]

    Tian J, Ma X, Zhou J, et al.Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene:Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferalδ18 O andδ13C records[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466:382-391. doi: 10.1016/j.palaeo.2016.11.041

    [10]

    Billups K.Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic[J].Palaeogeography Palaeoclimatology Palaeoecology, 2002, 185 (3) :287-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05941b461e3676ba78eab7cc914cb8bd

    [11]

    Beerling D J, Royer D L.Convergent Cenozoic CO2 history[J].Nature Geoscience, 2011, 4 (7) :418-420. doi: 10.1038/ngeo1186

    [12]

    Lariviere J P, Ravelo A C, Crimmins A, et al.Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing[J].Nature, 2012, 486 (7401) :97-100. doi: 10.1038/nature11200

    [13]

    Herbert T D, Lawrence K T, Tzanova A, et al.Late Miocene global cooling and the rise of modern ecosystems[J].Nature Geoscience, 2016, 9 (11) :843-847. doi: 10.1038/ngeo2813

    [14]

    Cerling T E, Harris J M, MacFadden B J, et al.Global vegetation change through the Miocene/Pliocene boundary[J].Nature, 1997, 389 (6647) :153-158. doi: 10.1038/38229

    [15]

    Pagani M, Freeman K H, Arthur M A.Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses[J].Science, 1999, 285 (5429) :876-879. doi: 10.1126/science.285.5429.876

    [16]

    Tripati A K, Roberts C D, Eagle R A.Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years.[J].Science, 2009, 326 (5958) :1394-1397. doi: 10.1126/science.1178296

    [17]

    Burgh J V D, Kürschner W M.Paleoatmospheric signatures in neogene fossil leaves.[J].Science, 1993, 260 (5115) :1788-1790. doi: 10.1126/science.260.5115.1788

    [18]

    Seki O, Foster G L, Schmidt D N, et al.Alkenone and boron-based Pliocene pCO2 records[J].Earth & Planetary Science Letters, 2010, 292 (1) :201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24143eefc8666cabe44d7e5563f23a9d

    [19]

    Pagani M, Zachos J C, Freeman K H, et al.Marked decline in atmospheric carbon dioxide concentrations during the Paleogene.[J].Science, 2005, 309 (5734) :600-603. doi: 10.1126/science.1110063

    [20]

    Ekart, Cerling, Montañez, et al.A 400million year carbon isotope record of pedogenic carbonate:Implications for paleoatmospheric carbon dioxide[J].American Journal of Science, 1999, 299 (10) :805-827. doi: 10.2475/ajs.299.10.805

    [21]

    Mejía L M, Méndez-Vicente A, Abrevaya L, et al.A diatom record of CO2 decline since the late Miocene[J].Earth and Planetary Science Letters, 2017, 479:18-33. doi: 10.1016/j.epsl.2017.08.034

    [22]

    Lyle M, Baldauf J.Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338:Burial, production, and diatom community[J].Palaeogeography Palaeoclimatology Palaeoecology, 2015, 433 (4) :106-128.

    [23]

    Hall R.Cenozoic geological and plate tectonic evolution of SEAsia and the SW Pacific:computer-based reconstructions, model and animations[J].Journal of Asian Earth Sciences, 2002, 20 (4) :353-431. doi: 10.1016/S1367-9120(01)00069-4

    [24]

    Zhao Q, Li Q, Jian Z.Deep waters and oceanic connection[M]//The South China Sea.Netherlands, Springer, 2009: 395-437.

    [25]

    Wang L W, Lin H L.Data report: carbonate and organic carbon contents of sediments from Sites 1143and 1146in the South China Sea[C]//Proceedings of the Ocean Drilling Program, Scientific Results.2004, 184: 1-9.

    [26]

    Wang P, Prell W L, Blum P, et al.Proceedings of the Ocean Drilling Program[C]//Initial Results.2000: 184.

    [27]

    Tian J, Yang M, Lyle M W, et al.Obliquity and long eccentricity pacing of the Middle Miocene climate transition[J].Geochemistry, Geophysics, Geosystems, 2013, 14 (6) :1740-1755. doi: 10.1002/ggge.20108

    [28]

    Tian J, Ma W, Lyle M W, et al.Synchronous mid-Miocene upper and deep oceanicδ13 C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion[J].Earth and Planetary Science Letters, 2014, 406:72-80. doi: 10.1016/j.epsl.2014.09.013

    [29]

    Falkowski P, Scholes R J, Boyle E, et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science, 2000, 290 (5490) :291-296. doi: 10.1126/science.290.5490.291

    [30]

    Hodell D A, Venz-Curtis K A.Late Neogene history of deepwater ventilation in the Southern Ocean[J].Geochemistry, Geophysics, Geosystems, 2006, 7 (9). http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2005GC001211/

    [31]

    Butzin M, Lohmann G, Bickert T.Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J].Paleoceanography, 2011, 26 (1). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009PA001901

    [32]

    Falkowski P G, Laws E A, Barber R T, et al.Phytoplankton and Their Role in Primary, New, and Export Production[M]//Ocean Biogeochemistry.Springer Berlin Heidelberg, 2003: 99-121.

    [33]

    Eppley R W, Peterson B J.Particulate organic matter flux and planktonic new production in the deep ocean[J].Nature, 1979, 282 (5740) :677-680. doi: 10.1038/282677a0

    [34]

    Berger W, Smetacek V, Wefer G.Ocean productivity and paleoproductivity-An overview[R]//Productivity of the Oceans Present and Past: Report of the Dahlem Workshop on Productivity of the Ocean.Berlin: Life Sciences Research Reports 44, Wiley & Sons, Chichester, 1989: 1-34.

    [35]

    Molfino B, McIntyre A.Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J].Science, 1990, 249 (4970) :766-769. doi: 10.1126/science.249.4970.766

    [36]

    Müller P J, Suess E.Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I.Organic carbon preservation[J].Deep Sea Research Part A.Oceanographic Research Papers, 1979, 26 (12) :1347-1362. doi: 10.1016/0198-0149(79)90003-7

    [37]

    Brummer G J A, Van Eijden A J M."Blue-ocean"paleoproductivity estimates from pelagic carbonate mass accumulation rates[J].Marine Micropaleontology, 1992, 19 (1-2) :99-117. doi: 10.1016/0377-8398(92)90023-D

    [38]

    Herguera J C, Berger W H.Paleoproductivity from benthic foraminifera abundance:Glacial to postglacial change in the west-equatorial Pacific[J].Geology, 1991, 19 (19) :1173-1176.

    [39]

    Jorissen F J, Fontanier C, Thomas E.Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics[M]//Developments in Marine Geology.Elsevier Science & Technology, 2007: 263-325.

    [40]

    Murray R W, Knowlton C, Leinen M, et al.Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope Stage 11[J].Global and Planetary Change, 2000, 24 (1) :59-78. doi: 10.1016/S0921-8181(99)00066-1

    [41]

    Dymond J, Suess E, Lyle M.Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J].Paleoceanography, 1992, 7 (2) :163-181. doi: 10.1029/92PA00181

    [42]

    Föllmi K B.The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits[J].Earth-Science Reviews, 1996, 40 (1-2) :55-124. doi: 10.1016/0012-8252(95)00049-6

    [43]

    Averyt K B, Paytan A.A comparison of multiple proxies for export production in the equatorial Pacific[J].Paleoceanography, 2004, 19 (4) :117-196. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2004PA001005/

    [44]

    Stott L D, Berelson W, Douglas R, et al.Increased dissolved oxygen in Pacific intermediate waters due to lower rates of carbon oxidation in sediments[J].Nature, 2000, 407 (6802) :367-370. doi: 10.1038/35030084

    [45]

    Higginson M J, Maxwell J R, Altabet M A.Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea:remote vs.local forcing of millennial-and orbital-scale variability[J].Marine Geology, 2003, 201 (1) :223-250. http://cn.bing.com/academic/profile?id=dc0501db3e7e30ffb5fa0ceb22fdbe9b&encoded=0&v=paper_preview&mkt=zh-cn

    [46]

    Lopes C, Kucera M, Mix A C.Climate change decouples oceanic primary and export productivity and organic carbon burial[J].Proceedings of the National Academy of Sciences, 2015, 112 (2) :332-335. doi: 10.1073/pnas.1410480111

    [47]

    Ren J, Gersonde R, Esper O, et al.Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables[J].Palaeogeography Palaeoclimatology Palaeoecology, 2014, 402 (4) :81-103. doi: 10.1016/j.palaeo.2009.12.006

    [48]

    Calvert S E, Pedersen T F.Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments:interpretation and application[J].Developments in Marine Geology, 2007, 1:567-644. doi: 10.1016/S1572-5480(07)01019-6

    [49]

    Delaney M L, Boyle E A.Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget[J].Nature, 1987, 330 (6144) :156-159. doi: 10.1038/330156a0

    [50]

    Matthews K A, Grottoli A G, McDonough W F, et al.Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca) [J].Geochimica et Cosmochimica Acta, 2008, 72 (18) :4537-4550. doi: 10.1016/j.gca.2008.05.064

    [51]

    Schenau S J, Reichart G J, Lange G J D.Phosphorus burial as a function of paleoproductivity and redox conditions in A-rabian Sea sediments[J].Geochimica et Cosmochimica Acta, 2005, 69 (4) :919-931. doi: 10.1016/j.gca.2004.05.044

    [52]

    Leinen M.Biogenic Silica Accumulation in the Central Equatorial Pacific and its Implications for Cenozoic Paleoceanography[J].Social Science Electronic Publishing, 1979, 90 (9) :1-46. http://cn.bing.com/academic/profile?id=f9987287975ae40e2daddace849f049e&encoded=0&v=paper_preview&mkt=zh-cn

    [53]

    Theyer F, Mayer L A, Barron J A, et al.The equatorial Pacific high-productivity belt:Elements for a synthesis of Deep Sea Drilling Project Leg 85results[J].Initial Reports of the Dep Sea Drilling Project, 1985. http://cn.bing.com/academic/profile?id=4d47aea72db86acdef3d691915f22319&encoded=0&v=paper_preview&mkt=zh-cn

    [54]

    Farrell J, Raffi I, Janecek T, et al.Late Neogene sedimentation patterns in the Eastern Equatorial Pacific Ocean[J].Proceedings of the Ocean Drilling Program Scientific Results, 1995, 138:717-756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3230160

    [55]

    Berger W H, Leckie R M, Janecek T R, et al.44.Neogene carbonate sedimentation on Ontong Java Plateau:Highlights and open questions[J].Proceedings of the Ocean Drilling Program Scientific Results, 1993, 130:711-744.

    [56]

    Diester-Haass L, Billups K, Emeis K C.In search of the late Miocene-early Pliocene"biogenic bloom"in the Atlantic O-cean (Ocean Drilling Program Sites 982, 925, and 1088) [J].Paleoceanography, 2005, 20 (4). doi: 10.1029/2005PA001139

    [57]

    Hermoyian C S, Owen R M.Late Miocene-early Pliocene biogenic bloom:Evidence from low-productivity regions of the Indian and Atlantic Oceans[J].Paleoceanography, 2001, 16 (1) :95-100. doi: 10.1029/2000PA000501

    [58]

    Cortese G, Gersonde R, Hillenbrand C D, et al.Opal sedimentation shifts in the world ocean over the last 15 Myr[J].Earth & Planetary Science Letters, 2004, 224 (3-4) :509-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e784c771890e8c15ca074d4fa99bd2ef

    [59]

    Filippelli G M.The global phosphorus cycle:past, present, and future[J].Elements, 2008, 4 (2) :89-95. doi: 10.2113/GSELEMENTS.4.2.89

    [60]

    Zhang Y G, Pagani M, Henderiks J, et al.A long history of equatorial deep-water upwelling in the Pacific Ocean[J].Earth & Planetary Science Letters, 2017, 467:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b368a069429f042830cfb444cf7c2e2e

    [61]

    Ravelo A C, Lawrence K T, Fedorov A, et al.Comment on"A 12-million-year temperature history of the tropical Pacific Ocean"[J].Science, 2014, 346 (6216) :1467-1467. doi: 10.1126/science.1257930

    [62]

    Filippelli G M.Intensification of the Asian monsoon and a chemical weathering event in the late Miocene-early Pliocene:implications for late Neogene climate change[J].Geology, 1997, 25 (1) :27-30.

    [63]

    Murray R W, Leinen M, Knowlton C W.Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean[J].Nature Geoscience, 2012, 5 (4) :270-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc615aedbfe036f1236c3f9521be9ea6

    [64]

    Diester-Haass L, Meyers P A, Bickert T.Carbonate crash and biogenic bloom in the late Miocene:Evidence from ODPSites 1085, 1086, and 1087in the Cape Basin, southeast Atlantic Ocean[J].Paleoceanography, 2004, 19.

    [65]

    Haug G H, Tiedemann R.Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J].Nature, 1998, 393 (3) :673-676. doi: 10.1038/31447

    [66]

    Nathan S A, Leckie R M.Early history of the Western Pacific Warm Pool during the middle to late Miocene (13.2~5.8Ma) :Role of sea-level change and implications for equatorial circulation[J].Palaeogeography Palaeoclimatology Palaeoecology, 2009, 274 (3) :140-159.

    [67]

    Li J, Wang R, Li B.Variations of opal accumulation rates and paleoproductivity over the past 12Ma at ODP Site 1143, southern South China Sea[J].Chinese Science Bulletin, 2002, 47 (7) :596-598. doi: 10.1360/02tb9137

    [68]

    孙军, 李晓倩, 陈建芳, 等.海洋生物泵研究进展[J].海洋学报, 2016, 38 (4) :1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001

    SUN Jun, LI Xiaoqian, CHEN Jianfang, et al.Progress in oceanic biological pump[J].Acta Oceanologica Sinica, 2016, 38 (4) :1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001

    [69]

    Heinze C, Maier-Reimer E, Winn K.Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg Carbon Cycle Model[J].Paleoceanography, 1991, 6 (4) :395-430. doi: 10.1029/91PA00489

    [70]

    Rocha C L D L, Passow U.Factors influencing the sinking of POC and the efficiency of the biological carbon pump[J].Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2007, 54 (5-7) :639-658. doi: 10.1016/j.dsr2.2007.01.004

    [71]

    Martin J H, Knauer G A, Karl D M, et al.VERTEX:carbon cycling in the northeast Pacific[J].Deep-Sea Research, 1987, 43:267-285. http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb201704015

    [72]

    李铁刚, 赵京涛, 孙荣涛, 等.250kaBP以来西太平洋暖池中心区——Ontong Java海台古生产力演化[J].第四纪研究, 2008, 28 (3) :447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009

    LI Tiegang, ZHAO Jingtao, SUN Rongtao, et al.Paleoproductivity evolution in the ontong java plateau-center of the western pacific warm pool during the last 250ka[J].Quaternary Sciences, 2008, 28 (3) :447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009

    [73]

    Vincent E, Killingley J S, Berger W H.The Magnetic Epoch-6carbon shift:A change in the ocean′s 13C/12C ratio 6.2million years ago[J].Marine Micropaleontology, 1980, 5:185-203.

    [74]

    Elmstrom K M, Kennett J P.Late neogene paleoceanographic evolution of site 590-southwest pacific[J].Initial Reports of the Deep Sea Drilling Project, 1986, 90:1361-1381. http://cn.bing.com/academic/profile?id=bfb16755600a04242414c58640ecd4b5&encoded=0&v=paper_preview&mkt=zh-cn

    [75]

    Wang P X, Li Q Y, Tian J, et al.Long-term cycles in the carbon reservoir of the Quaternary ocean:aperspective from the South China Sea[J].National Science Review, 2014, 1 (1) :119-143. doi: 10.1093/nsr/nwt028

    [76]

    Jiao N, Herndl G J, Hansell D A, et al.Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean[J].Nature Reviews Microbiology, 2010, 8 (8) :593-599. doi: 10.1038/nrmicro2386

    [77]

    Bickert T, Haug G H, Tiedemann R.Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999:Implications for Caribbean paleoceanography, organic carbon burial, and the Messinian Salinity Crisis[J].Paleoceanography, 2004, 19 (1), doi:10.1029/2002PA000799.

    [78]

    Kump L R, Arthur M A.Interpreting carbon-isotope excursions:carbonates and organic matter[J].Chemical Geology, 1999, 161 (1-3) :181-198. doi: 10.1016/S0009-2541(99)00086-8

    [79]

    Herman F, Seward D, Valla P G, et al.Worldwide acceleration of mountain erosion under a cooling climate[J].Nature, 2013, 504 (7480) :423-426. doi: 10.1038/nature12877

    [80]

    Willenbring J K, von Blanckenburg F.Long-term stability of global erosion rates and weathering during late-Cenozoic cooling[J].Nature, 2010, 465 (7295) :211-214. doi: 10.1038/nature09044

    [81]

    Vincent E, Berger W H.Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis[C].AGU, Washington D C, Geophys.Monogr., 1985, 32: 455-468.

    [82]

    张江勇, 汪品先.深海研究中的底栖有孔虫:回顾与展望[J].地球科学进展, 2004, 19 (4) :545-551. doi: 10.3321/j.issn:1001-8166.2004.04.009

    ZHANG Jiangyong, WANG Pinxian.Benthic foraminifera in deep-sea research:Retrospect and prospect[J].Advances in Earth Science, 2004, 19 (4) :545-551. doi: 10.3321/j.issn:1001-8166.2004.04.009

    [83]

    Wang P, Zhao Q, Jian Z, et al.Thirty million year deep sea records in the South China Sea[J].Chinese Science Bulletin, 2003, 48 (23) :2524-2535. doi: 10.1007/BF03037016

    [84]

    Miller K G, Wright J D, Fairbanks R G.Unlocking the Ice House:Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion[J].Journal of Geophysical Research Solid Earth, 1991, 96 (B4) :6829-6848. doi: 10.1029/90JB02015

    [85]

    Shevenell A E, Kennett J P, Lea D W.Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion.[J].Science, 2004, 305 (5691) :1766-1770. doi: 10.1126/science.1100061

    [86]

    Sigman D M, Boyle E A.Glacial/interglacial variations in atmospheric carbon dioxide[J].Nature, 2000, 407 (6806) :859-869. doi: 10.1038/35038000

    [87]

    Keller K M, Joos F, Lehner F, et al.Detecting changes in marine responses to ENSO from 850to 2100C.E.:Insights from the ocean carbon cycle[J].Geophysical Research Letters, 2015, 42 (2) :518-525. doi: 10.1002/2014GL062398

    [88]

    丁仲礼, 熊尚发.古气候数值模拟:进展评述[J].地学前缘, 2006, 13 (1) :21-31. doi: 10.3321/j.issn:1005-2321.2006.01.004

    DING Zhongli, XIONG Shangfa.Numerical modeling in paleoclimate study:Progress and problems[J].Earth Science Frontiers, 2006, 13 (1) :21-31. doi: 10.3321/j.issn:1005-2321.2006.01.004

    [89]

    Ruddiman W F, Kutzbach J E.Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern A-sia and the American West[J].Journal of Geophysical Research:Atmospheres, 1989, 94 (D15) :18409-18427. doi: 10.1029/JD094iD15p18409

    [90]

    Maier-Reimer E, Mikolajewicz U, Crowley T.Ocean general circulation model sensitivity experiment with an open Central American Isthmus[J].Paleoceanography, 1990, 5 (3) :349-366. doi: 10.1029/PA005i003p00349

    [91]

    Shellito C J, Sloan L C, Huber M.Climate model sensitivity to atmospheric CO 2, levels in the Early-Middle Paleogene[J].Palaeogeography Palaeoclimatology Palaeoecology, 2003, 193 (1) :113-123. doi: 10.1016/S0031-0182(02)00718-6

    [92]

    Liu Z, Otto-Bliesner B L, He F, et al.Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming[J].Science, 2009, 325 (5938) :310-314. doi: 10.1126/science.1171041

    [93]

    O'Dea A, Lessios H A, Coates A G, et al.Formation of the Isthmus of Panama[J].Science Advances, 2016, 2 (8), doi:1126/sciadv.1600883.

    [94]

    Kamikuri S I, Motoyama I, Nishi H, et al.Evolution of Eastern Pacific Warm Pool and upwelling processes since the middle Miocene based on analysis of radiolarian assemblages:Response to Indonesian and Central American Seaways[J].Palaeogeography Palaeoclimatology Palaeoecology, 2009, 280 (4) :469-479. doi: 10.1016/j.palaeo.2009.06.034

    [95]

    Schourupkristensen V, Sidorenko D, Wolfgladrow D A, et al.A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice-Ocean Model (FESOM1.3) [J].Geoscientific Model Development, 2014, 7 (4) :2769-2802. doi: 10.5194/gmd-7-2769-2014

    [96]

    Ilyina T, Six K D, Segschneider J, et al.Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations[J].Journal of Advances in Modeling Earth Systems, 2013, 5 (2) :287-315. doi: 10.1029/2012MS000178

  • 加载中

(3)

(1)

计量
  • 文章访问数:  2834
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2018-02-12
修回日期:  2018-05-19
刊出日期:  2018-08-28

目录