南黄海中-古生界地震勘探震源设计及其应用

李玉剑, 张异彪, 刘璐晨, 黄涛, 李斌, 陈建文. 南黄海中-古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2): 200-212. doi: 10.16562/j.cnki.0256-1492.2018011905
引用本文: 李玉剑, 张异彪, 刘璐晨, 黄涛, 李斌, 陈建文. 南黄海中-古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2): 200-212. doi: 10.16562/j.cnki.0256-1492.2018011905
LI Yujian, ZHANG Yibiao, LIU Luchen, HUANG Tao, LI Bin, CHEN Jianwen. Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 200-212. doi: 10.16562/j.cnki.0256-1492.2018011905
Citation: LI Yujian, ZHANG Yibiao, LIU Luchen, HUANG Tao, LI Bin, CHEN Jianwen. Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 200-212. doi: 10.16562/j.cnki.0256-1492.2018011905

南黄海中-古生界地震勘探震源设计及其应用

  • 基金项目:
    南黄海油气资源调查(DD20160512);南黄海海域油气资源普查(GZH20080503);南黄海前第三系油气前景研究(XQ-2005-01)
详细信息
    作者简介: 李玉剑(1987—), 男, 硕士, 工程师, 主要从事海洋地震采集参数设计与论证, E-mail:chinaliyujian@126.com
    通讯作者: 张异彪(1969—), 男, 高级工程师, 主要从事海洋地质、地球物理调查研究, E-mail:zyb@sopgc.com
  • 中图分类号: P738

  • 蔡秋蓉编辑

Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea

More Information
  • 南黄海崂山隆起存在新近系底界T2强反射界面, 中深部发育多套碳酸盐岩高速层, 并经历长期的压实作用及复杂的构造运动, 波阻抗差异变小, 构造特征更为复杂, 使得地震波场复杂, 深层有效的地震反射信号较弱, 信噪比较低, 成像质量较差。为了改善中-古生界反射波成像质量, 着重对震源端进行攻关, 优化设计了2组富低频、强能量的气枪组合震源(总容量为6390in3), 分别是沉放10m的平面组合震源和“倒梯形”立体组合震源(4子阵沉放深度分别为7、10、10、7m)。通过外业试验, 优选了低频更强的平面组合震源作为地震采集震源方案。与以往地震资料进行了对比, 本次采集的地震资料能量衰减较慢, 深层能量更强, 整体改善了T2不整合面下伏反射层的成像质量, 为该区的中-古生界油气勘探奠定基础。

  • 加载中
  • 图 1  南黄海构造区划图(据青岛海洋地质研究所,2016年)

    Figure 1. 

    图 2  南黄海某海域近道剖面多次波特征

    Figure 2. 

    图 3  南黄海某海域叠前时间偏移叠加剖面

    Figure 3. 

    图 4  6390in3气枪组合震源平面排布示意图

    Figure 4. 

    图 5  气枪组合震源(6390in3)不同沉放深度模拟远场子波波形对比

    Figure 5. 

    图 6  气枪组合震源(6390in3)不同沉放深度模拟远场子波频谱对比

    Figure 6. 

    图 7  气枪立体组合震源(6390in3)不同沉放深度模拟远场子波波形对比

    Figure 7. 

    图 8  气枪立体组合震源(6390in3)不同沉放深度模拟远场子波频谱对比

    Figure 8. 

    图 9  6390in3气枪平面组合震源和5040in3立体组合震源远场子波波形对比

    Figure 9. 

    图 10  6390in3气枪平面组合震源和5040in3立体组合震源远场子波频谱对比

    Figure 10. 

    图 11  6390in3“倒梯形”立体组合震源和5040in3立体组合震源远场子波波形对比

    Figure 11. 

    图 12  6390in3“倒梯形”立体组合震源和5040in3立体组合震源远场子波频谱对比

    Figure 12. 

    图 13  6390in3气枪平面组合震源和“倒梯形”立体组合震源远场子波波形对比

    Figure 13. 

    图 14  6390in3气枪平面组合震源和“倒梯形”立体组合震源远场子波频谱对比

    Figure 14. 

    图 15  4组试验方案初叠剖面

    Figure 15. 

    图 16  4组试验方案目的层段(双程旅行时1.5~3s)频谱分析

    Figure 16. 

    图 17  试验方案1和4叠后偏移剖面对比(据陈建文等,2016年)

    Figure 17. 

    图 18  平面和立体组合震源电缆沉放16m子波波形对比(T=3s,Q=110)

    Figure 18. 

    图 19  平面和立体组合震源电缆沉放16m子波频谱对比(T=3s,Q=110)

    Figure 19. 

    图 20  单炮记录浅、中、深层均方根振幅对比分析

    Figure 20. 

    图 21  叠加剖面对比分析

    Figure 21. 

    表 1  南黄海盆地地震反射界面以及地质属性(据陈建文等,2016年)

    Table 1.  The seismic reflection interfaces and their geological properties

    下载: 导出CSV

    表 2  气枪组合震源(6390in3)不同沉放深度模拟远场子波参数统计

    Table 2.  The far-field seismic wavelet parameters on 6390in3 source in different depths

    沉放深度/m 主峰值/(bar·m) 峰-峰值/(bar·m) 初泡比 低截频/(-6dB,Hz) 高截频/(-6dB,Hz) 优势频宽/(-6dB,Hz) 主频/(-6dB,Hz)
    6 113.0 234.7 26.1 6 99 93 52.5
    8 107.7 222.2 19.8 6 89 83 47.5
    10 110.6 228.0 19.9 6 66 60 36
    12 106.9 220.3 13.8 6 50 44 28
    下载: 导出CSV

    表 3  气枪立体组合震源(6390in3)不同沉放深度模拟远场子波参数统计

    Table 3.  The far-field seismic wavelet parameters on 6390in3 source in different depths

    沉放深度/m 主峰值/
    (bar·m)
    峰-峰值/
    (bar·m)
    初泡比 低截频/
    (-6dB,Hz)
    高截频/
    (-6dB,Hz)
    优势频宽/
    (-6dB,Hz)
    主频/
    (-6dB,Hz)
    5.5/10 109.1 183.5 20.1 6 70 64 38.0
    7/10 112.6 182.5 20.6 6 70 64 38.0
    8.5/10 108.4 206.7 20.8 6 69 63 37.5
    下载: 导出CSV

    表 4  气枪立体组合震源(6390in3)不同组合形状模拟远场子波参数统计

    Table 4.  The seismic wavelet parameters of 6390in3 multi-level source in different shapes

    序号 震源沉放
    深度/m
    主峰值/
    (bar·m)
    峰-峰值/
    (bar·m)
    初泡比 低截频/
    (-6dB,Hz)
    高截频/
    (-6dB,Hz)
    优势频宽/
    (-6dB,Hz)
    主频/
    (-6dB,Hz)
    1 倒梯形7-10-10-7 112.6 182.5 20.6 6 70 64 38.0
    2 正梯形10-7-7-10 112.1 178.0 18.0 6 70 64 38.0
    3 N形10-7-10-7 112.4 178.6 15.3 6 70 64 38.0
    下载: 导出CSV

    表 5  地震数据采集参数试验方案

    Table 5.  4 test plans for acquisition of parameters

    试验方案 震源类型 震源沉放深度/m 电缆沉放深度/m
    1 平面组合震源 10 16
    2 平面组合震源 10 20
    3 “倒梯形”立体组合震源 7-10-10-7 20
    4 “倒梯形”立体组合震源 7-10-10-7 16
    下载: 导出CSV
  • [1]

    陈建文, 龚建明, 李刚, 等.南黄海盆地海相中-古生界油气资源潜力巨大[J].海洋地质前沿, 2016, 32(1):1-7.

    CHEN Jianwen, GONG Jianming, LI Gang, et al.Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.

    [2]

    杨金玉.南黄海盆地与周边构造关系及海相中-古生界分布特征与构造演化研究[D].浙江大学, 2010.

    YANG Jinyu. Research on the tectonic relation between the South Yellow Sea basin and its adjacent area and distribution characteristic and tectonic evolution of the Mesozoic-Paleozoic marine strata[D].Zhejiang University, 2010.

    [3]

    马立桥, 陈汉林, 董庸, 等.苏北-南黄海南部叠合盆地构造演化与海相油气勘探潜力[J].石油与天然气地质, 2007, 28(1):35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005

    MA Liqiao, CHEN Hanlin, DONG Yong, et al. Tectonic evolution of Subei-Nanhuanghai superim posed basin from the late Mesozoic to Cenozoic and marine petroleum potential[J]. Oil & Gas Geology, 2007, 28(1):35-42. doi: 10.3321/j.issn:0253-9985.2007.01.005

    [4]

    侯方辉, 张志珣, 张训华, 等.南黄海盆地地质演化及构造样式地震解释[J].海洋地质与第四纪地质, 2008, 28(5):61-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=64dd6cf3-ddca-482e-941c-6a365b2da7fd

    HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Geologic evolution and tectonic styles in the South Yellow Sea basin[J]. Marine Geology & Quaternary Geology, 2008, 28(5):61-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=64dd6cf3-ddca-482e-941c-6a365b2da7fd

    [5]

    祁江豪.南黄海盆地中、古生界构造演化及与四川盆地对比分析[D].中国地质大学(北京), 2012.

    QI Jianghao. Mesozoic-Paleozoic tectonic evolution in the South Yellow Sea basin and the comparative analysis with Sichuan basin[D]. China University of Geosciences(Beijing), 2012.

    [6]

    庞玉茂, 张训华, 肖国林, 等.下扬子南黄海沉积盆地构造地质特征[J].地质论评, 2016, 62(3):604-616. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603006

    PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and geological characteristics of the South Yellow Sea Basin in Lower Yangtze Block[J].Geological Review, 2016, 62(3):604-616. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603006

    [7]

    吴志强, 吴时国, 童思友, 等.基于南黄海海相油气勘探的地震采集技术研究[J].地球物理学报, 2011, 54(4):1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    WU Zhiqiang, WU Shiguo, TONG Siyou, et al. A study on seismic acquisition basic on marine carbonate hydrocarbon exploration in the southern Yellow Sea[J]. Chinese Journal of Geophysics, 2011, 54(4):1061-1070. doi: 10.3969/j.issn.0001-5733.2011.04.021

    [8]

    吴志强, 骆迪, 曾天玖, 等.南黄海海相油气地震勘探难点分析与对策建议[J].海相油气地质, 2014, 19(3):8-17. doi: 10.3969/j.issn.1672-9854.2014.03.002

    WU Zhiqiang, LUO Di, ZENG Tianjiu, et al. Techinical difficulties and countermeasures of petroleum seismic exploration in the South Yellow Sea basin[J]. Marine Origin Petroleum Geology, 2014, 19(3):8-17. doi: 10.3969/j.issn.1672-9854.2014.03.002

    [9]

    张海啟, 陈建文, 李刚, 等.地震调查在南黄海崂山隆起的发现及其石油地质意义[J].海洋地质与第四纪地质, 2009, 29(3):107-113. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4eebe772-99fd-42f2-9eeb-aa7a99680ae6

    ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in LaoShan Uplift of the South Yellow Sea and the significance[J].Marine Geology & Quaternary Geology, 2009, 29(3):107-113. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4eebe772-99fd-42f2-9eeb-aa7a99680ae6

    [10]

    熊忠, 张敏强, 高顺莉, 等.南黄海中、古生界地震波场反射特征模拟与采集技术攻关[J].地球物理学进展, 2016, 31(5):2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    XIONG Zhong, ZHANG Minqiang, GAO Shunli, et al. Seismic wave field simulation for reflection characteristics and technology study on seismic acquisition of Mesozoic-Paleozoic in the South Yellow Sea[J]. Progress in Geophysics, 2016, 31(5):2172-2180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201605040

    [11]

    吴志强.南黄海中部隆起海相地层油气地震勘探关键技术研究[D].中国海洋大学, 2009.

    WU Zhiqiang. The seismic techniques for exploring marine facies stratigraphic hydrocarbon entrapped in the middle uplift of the South Yellow Sea[D]. Ocean University of China, 2009.

    [12]

    邢涛, 张训华, 张维冈.南黄海地球物理调查研究现状[J].海洋地质态, 2005, 21(6):1-4, 37. http://d.old.wanfangdata.com.cn/Periodical/hydzdt200506001

    XING Tao, ZHANG Xunhua, ZHANG Weigang. Progress in geophysical survey and researches in the South Yellow Sea [J]. Marine Geology Letters, 2005, 21(6):1-4, 37. http://d.old.wanfangdata.com.cn/Periodical/hydzdt200506001

    [13]

    Guillaume Cambois, Multi-level airgun array a simple and effecttive way to enhance the low frequency content of marine seismic data[C]. SEG, 2009.

    [14]

    Zhan Fu, Source deghosting for synchronized multi-level source streamer data[C].SEG, 2015.

    [15]

    陈建文, 施剑, 刘俊, 等.南黄海海相中-古生界地震地质条件[J].海洋地质前沿, 2016, 32(10):1-8. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201610001

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(10):1-8. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201610001

    [16]

    金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘, 2005, 12(3):15-22. doi: 10.3321/j.issn:1005-2321.2005.03.003

    JIN Zhijun. Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J]. Earth Science Fromtiers, 2005, 12(3): 15 —22. doi: 10.3321/j.issn:1005-2321.2005.03.003

    [17]

    李可恩.含高速屏蔽层的地震数据采集及分析[D].成都理工大学, 2007.

    LI Keen. Seismic acquisition and analysis in the area of high velocity shielding layers[D]. Chengdu University Technology, 2007.

    [18]

    孟祥梅, 刘保华, 阚光明, 等.南黄海海底沉积物声学特性及其影响因素试验研究[J].海洋学报, 2012, 34(6):74-83. http://d.old.wanfangdata.com.cn/Periodical/hyxb201206009

    MENG Xiangmei, LIU Baohua, KAN GuanGmin. et al. An experimental study on acoustic properties and their influencing factors of marine sediment in the southern Huanghai Sea[J]. Acta Oceanologica Sinica, 2012, 34(6):74-83. http://d.old.wanfangdata.com.cn/Periodical/hyxb201206009

    [19]

    李鹏, 刘伊克, 常旭, 等.多次波问题的研究进展[J].地球物理学进展, 2006, 21(3):888-897. doi: 10.3969/j.issn.1004-2903.2006.03.029

    LI Peng, LIU Yike, CHANG Xu, et al. Progress on the multiple problems[J]. Progress in Geophysics, 2006, 21(3):888-897. doi: 10.3969/j.issn.1004-2903.2006.03.029

    [20]

    张广利, 郝重涛, 姚陈.海洋地震资料多次波衰减方法综述[J].地球物理学进展, 2016, 31(6):2777-2787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201606057

    ZHANG Guangli, HAO Chongtao, YAO Chen.Summary of multiples attenuation approaches in marine seismic data processing[J]. Progress in Geophysics, 2016, 31(6):2777-2787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201606057

    [21]

    陈建文, 龚建明, 李刚, 等.南黄海盆地海相中-古生界油气资源潜力巨大[J].海洋地质前沿, 2016, 32(1):1-7.

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.

    [22]

    王建花, 李庆忠, 邱睿.浅层强反射界面的能量屏蔽作用[J].石油地球物理勘探, 2003, 38(6):589-596+602-708+577. doi: 10.3321/j.issn:1000-7210.2003.06.002

    WANG Jianhua, LI Qingzhong, QIU Rui. Energy shielding action of shallow strong reflector[J].OGP, 2003, 38(6):589-596+602-708+577. doi: 10.3321/j.issn:1000-7210.2003.06.002

    [23]

    王立明.范氏气体下气枪激发子波信号模拟研究[D].长安大学, 2010.

    WANG Liming. Simulation study on signature stimulated by air-guns in conditions of van der waals gas[D]. Changan University, 2010.

    [24]

    Ziolkowski A. Measurement of air-gun bubble oscillations[J]. Geophysics, 1998, 63(6):2009-2024. doi: 10.1190/1.1444494

    [25]

    Ziolkowski A M, Hanssen P, Gatliff R, et al. Use of low frequencies for sub-basalt imaging[J].Geophysical Prospecting. 2003, 51:169-182. doi: 10.1046/j.1365-2478.2003.00363.x

    [26]

    Safar M H. The radiation of acoustic waves from an airgun[J]. Geophysical Prospecting, 1976, 24:756-772. doi: 10.1111/gpr.1976.24.issue-4

    [27]

    Nooteboom J J. Signature and amplitude of linear air gun arrays[J]. Geophysical Prospecting, 1978, 26:194-201. doi: 10.1111/gpr.1978.26.issue-1

    [28]

    SHEN Honglei, Elboth Thomas, TIAN Gang, et al. Modeling of multi-depth slanted airgun source for deghosting[J]. Applied Geophysics, 11(4):405-417. doi: 10.1007/s11770-014-0461-1

    [29]

    Denis Mougenot, Sercel France. Land and marine equipment for broadband seismic[C]. SEG, 2012.

    [30]

    杨凯, 陈华, 顾汉明.深水立体延迟激发气枪震源的设计与应用[J].工程地球物理学报, 2011, 8(6): 641-647. doi: 10.3969/j.issn.1672-7940.2011.06.001

    YANG Kai, CHEN Hua, GU Hanming. The design and application of tridimensional delayed excitation air-gun arrays to deep water seismic exploration[J]. Chinese Journal of Engineering Geophysics, 2011, 8(6):641- 647. doi: 10.3969/j.issn.1672-7940.2011.06.001

    [31]

    Zhan Fu, Nan Du, Hao Shen, et al.Source deghosting for synchronized multi-level source streamer data[C].SEG, 2015.

    [32]

    Cambois G, Long A, Parkes G, et al.Multi-level airgun array - A simple and effective way to enhance low frequencies in marine seismic[C].EAGE, 2009.

    [33]

    Ronan Sablon, Thierry Payen, Helene Tonchia, et al. Ghost-free imaging combining synchronized multi-level source and variable-depth streamer[C].SEG, 2013.

    [34]

    唐松华, 李斌, 张异彪, 等.立体阵列组合技术在南黄海盆地的应用[J].海洋地质前沿, 2013, 29(5):64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

    TANG Songhua, LI Bin, ZHANG Yibiao, et al. Application of tridimensional delayed excitation air-gun array in the South Yellow Sea basin[J]. Marine Geology Frontiers, 2013, 29(5):64-70. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201305009

  • 加载中

(21)

(5)

计量
  • 文章访问数:  1682
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2018-01-19
修回日期:  2018-03-23
刊出日期:  2019-04-28

目录