Optimization of TOC well logging prediction models and their application to source rock evaluation in the Shanan Sag of Bohai Sea
-
摘要:
针对渤海海域沙南凹陷油气勘探程度低,烃源岩样品取芯少,连续性差,烃源岩研究薄弱及勘探潜力争议较大等问题,基于沙南凹陷内6口单井的测井资料及泥岩样品实测TOC数据,分别应用多元线性回归法和改进的ΔlgR法分层段建立沙南凹陷东三段、沙一二段、沙三段烃源岩TOC定量预测模型,对比优选后发现改进的ΔlgR法和多元线性回归法中的四参数线性回归法可有效地预测沙南凹陷单井湖相烃源岩TOC纵向分布,并以改进的ΔlgR法最优;选取改进的ΔlgR法预测TOC曲线对两口代表性单井烃源岩进行评价,结果表明沙三段具有烃源岩占比地层厚度高、TOC高、好—优质烃源岩厚度大等特点,为凹陷主力烃源岩系,沙南凹陷勘探前景广阔。
Abstract:Oil and gas exploration degree of the Shanan Sag of the Bohai Basin is relatively low due to lack of drilling cores and source rock samples. TOC logging prediction models for source rocks are established in this paper for the Members of E3d3、E3s1+2、E2s3 by the multiple linear regression method and the improved ΔlgR method based on the logging data and limited measured TOC data of the mudstone samples collected from six single wells. After comparison and optimization, it is found that both the improved ΔlgR method and the four- parameter linear regression method are effective to predict the TOC vertical distribution pattern of the lacustrine source rocks in single wells in the Sag and the improved ΔlgR method is obviously more efficient. Therefore, predicted TOC curve of improved ΔlgR is selected to evaluate the source rocks for two representative single wells. The result shows that the E2s3 is characterized by high ratio of source rocks, high TOC content and large thickness of high-quality source rocks. It is the main source rock of the study area and the Shanan sag must have good prospect for oil and gas exploration. The research results are helpful to the evaluation of source rocks in the Shanan sag and will provide solid scientific basis for further understanding of oil and gas exploration potential in the study area.
-
Key words:
- source rocks /
- organic carbon content /
- logging evaluation /
- Shanan Sag
-
-
图 1 沙南凹陷构造位置(据参考文献[12]修改)
Figure 1.
图 2 岩石组成示意图[15]
Figure 2.
表 1 沙南凹陷烃源岩TOC测井多元线性回归法定量预测模型优选
Table 1. Quantitative TOC logging prediction models by multivariate linear regression method for source rocks in Shanan Sag
层位 测井参数 TOC定量预测模型 相关系数 东三段 单参数 声波时差(AC) TOC=0.063AC−4.328 0.63 电阻率(RT) TOC=0.003RT+2.222 0.016 密度(DEN) TOC=−6.56DEN+18.309 0.502 中子(CNL) TOC=0.105CNL−0.953 0.465 双参数 AC, CNL TOC=0.076AC−0.037CNL−4.604 0.636 三参数 AC, RT, CNL TOC=0.09AC+0.046RT−0.052CNL−5.756 0.682 四参数 AC, RT, CNL, DEN TOC=(0.214AC+0.091RT−0.183CNL−5.928)/DEN−2.414 0.695 沙一二段 单参数 声波时差(AC) TOC=0.161AC−13.484 0.816 电阻率(RT) TOC=0.726RT−0.297 0.611 密度(DEN) TOC=−8.487DEN+23.28 0.38 中子(CNL) TOC=0.082CNL+0.136 0.23 双参数 AC, RT TOC=0.134AC+0.381RT−12.294 0.862 三参数 AC, RT, CNL TOC=0.141AC+0.373RT−0.031CNL−12.069 0.864 四参数 AC, RT, CNL, DEN TOC=(0.335AC+0.942RT−0.067CNL−36.258)/DEN+2.992 0.865 沙三段 单参数 声波时差(AC) TOC=0.084AC−5.363 0.685 电阻率(RT) TOC=0.154RT+1.484 0.42 密度(DEN) TOC=−17.185DEN+45.894 0.686 中子(CNL) TOC=0.162CNL−1.458 0.625 双参数 AC, CNL TOC=0.06AC+0.068CNL−4.806 0.708 三参数 AC, RT, CNL TOC=0.101AC+0.198RT−0.028CNL−7.653 0.845 四参数 AC, RT, CNL, DEN TOC=(0.243AC+0.489RT−0.068CNL−20.204)/DEN+0.77 0.847 表 2 沙南凹陷烃源岩TOC测井ΔlgR法定量预测模型
Table 2. Quantitative TOC logging prediction models by ΔlgR method of source rocks in Shanan Sag
层位 TOC定量预测模型 相关系数 东三段 TOC=(0.206AC+3.795lgRT−17.645)/DEN 0.767 沙一二段 TOC=(0.325AC+6.94lgRT−30.115)/DEN 0.835 沙三段 TOC=(0.215AC+7.648lgRT−19.825)/DEN 0.877 表 3 沙南凹陷烃源岩实测TOC值与测井计算TOC值误差对比分析
Table 3. Comparison of errors between measured TOC from coresand predicted TOC by different means
预测方法 层位 平均TOC/% 平均绝对误差* 平均相对误差**/% 数据点/个 实测 测井计算 四参数线性回归法 东三段 2.232 2.221 0.560 25.1 21 沙一二段 2.599 2.606 0.898 34.6 13 沙三段 2.535 2.519 0.579 22.8 21 改进的ΔlgR法 东三段 2.232 2.234 0.516 23.1 21 沙一二段 2.599 2.580 1.048 40.3 13 沙三段 2.535 2.545 0.493 19.4 21 *平均绝对误差= /样品数;
**平均相对误差=平均绝对误差/平均实测TOC。表 4 CFD23-1-1井、CFD16-3-1井烃源岩评价结果统计
Table 4. Statistical table of source rock evaluation results of Well CFD23-1-1 and Well CFD16-3-1
井号 层位 不同级别烃源岩厚度/m 地层厚度/m 烃源岩厚度占地层厚度百分比/% 差 中 好 优 合计 CFD23-1-1 东三段 41 78 20 67 206 255 80.78 沙一二段 0 12 20.5 86.5 119 133 89.47 沙三段 0 12 76 168 256 283 90.46 CFD16-3-1 东三段 0 97.5 45 0 142.5 296 48.14 沙一二段 12 37 0 0 49 170 28.82 沙三段 49 59 148 96.5 352.5 551.5 63.92 -
[1] 袁东山, 王国斌, 汤泽宁, 等. 测井资料评价烃源岩方法及其进展[J]. 石油天然气学报, 2009, 31(4):192-194 doi: 10.3969/j.issn.1000-9752.2009.04.046
YUAN Dongshan, WANG Guobin, TANG zening, et al. Methods for evaluating source rocks by well-logging data and its progress [J]. Journal of Oil and Gas Technology, 2009, 31(4): 192-194. doi: 10.3969/j.issn.1000-9752.2009.04.046
[2] 李延钧, 张烈辉, 冯媛媛, 等. 页岩有机碳含量测井评价方法及其应用[J]. 天然气地球科学, 2013, 24(1):169-175
LI Yanjun, ZHANG Liehui, FENG Yuanyuan, et al. Logging evaluation method and its application for measuring the total organic carbon content in shale gas [J]. Natural Gas Geoscience, 2013, 24(1): 169-175.
[3] 刘超. 测井资料评价烃源岩方法改进及作用[D]. 大庆: 东北石油大学, 2011.
LIU Chao. Evaluating source rock using logging data—Improvement and application [D]. Daqing: Northeast Petroleum University, 2011.
[4] 袁彩萍, 徐思煌, 薛罗. 珠江口盆地惠州凹陷主力烃源岩测井预测及评价[J]. 石油实验地质, 2014, 36(1):110-116 doi: 10.11781/sysydz201401110
YUAN Caiping, XU Sihuang, XUE Luo. Prediction and evaluation with logging of main source rocks in Huizhou Sag, Pearl River Mouth Basin [J]. Petroleum Geology & Experiment, 2014, 36(1): 110-116. doi: 10.11781/sysydz201401110
[5] 李松峰, 毕建霞, 曾正清, 等. 普光地区须家河组烃源岩地球物理预测[J]. 断块油气田, 2015, 22(6):705-710
LI Songfeng, BI Jianxia, ZENG Zhengqing, et al. Geophysical prediction of source rock of Xujiahe Formation in Puguang area [J]. Fault-Block Oil & Gas Field, 2015, 22(6): 705-710.
[6] 黄薇, 张小莉, 李浩, 等. 鄂尔多斯盆地中南部延长组7段页岩有机碳含量解释模型[J]. 石油学报, 2015, 36(12):1508-1515 doi: 10.7623/syxb201512005
HUANG Wei, ZHANG Xiaoli, LI Hao, et al. Interpretation model of organic carbon content of shale in Member 7 of Yanchang Formation, central-southern Ordos Basin [J]. Acta Petrolei Sinica, 2015, 36(12): 1508-1515. doi: 10.7623/syxb201512005
[7] Passey Q R, Creaney S. A practical model for organic richness from porosity and resistivity logs [J]. AAPG Bulletin, 1990, 74(12): 1777-1794.
[8] Huang Z, Williamson M A. Artificial neural network modelling as an aid to source rock characterization [J]. Marine and Petroleum Geology, 1996, 13(2): 277-290. doi: 10.1016/0264-8172(95)00062-3
[9] 孟召平, 郭彦省, 刘尉. 页岩气储层有机碳含量与测井参数的关系及预测模型[J]. 煤炭学报, 2015, 40(2):247-253
MENG Zhaoping, GUO Yansheng, LIU Wei. Relationship between organic carbon content of shale gas reservoir and logging parameters and its prediction model [J]. Journal of China Coal Society, 2015, 40(2): 247-253.
[10] 贺聪, 苏奥, 张明震, 等. 鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用[J]. 天然气地球科学, 2016, 27(4):754-764 doi: 10.11764/j.issn.1672-1926.2016.04.0754
HE Cong, SU Ao, ZHANG Mingzhen, et al. Optimal selection and application of prediction means for organic carbon content of source rocks based on logging data in Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2016, 27(4): 754-764. doi: 10.11764/j.issn.1672-1926.2016.04.0754
[11] Kamali M R, Mirshady A A. Total organic carbon content determined from well logs using delta log and neuro fuzzy techniques [J]. Journal of Petroleum Science and Engineering, 2004, 46(3): 141-148.
[12] 陈丽祥, 周晓光, 付鑫, 等. 渤海湾盆地沙南凹陷东次洼孔店组生烃潜能评价[J]. 石油地质与工程, 2018, 32(4):42-45 doi: 10.3969/j.issn.1673-8217.2018.04.010
CHEN Lixiang, ZHOU Xiaoguang, FU Xin, et al. Hydrocarbon potential evaluation of Kongdian formation in Shannan sag, Bohaiwan basin [J]. Petroleum Geology and Engineering, 2018, 32(4): 42-45. doi: 10.3969/j.issn.1673-8217.2018.04.010
[13] 李宏义, 吴克强, 刘丽芳, 等. 沙南凹陷构造演化的“跷跷板”效应与油气评价新认识[J]. 中国海上油气, 2011, 23(4):225-228 doi: 10.3969/j.issn.1673-1506.2011.04.003
LI Hongyi, WU Keqiang, LIU Lifang, et al. A "Seesaw" effect of structural evolution and some new cognition in hydrocarbon evaluation in Shanan sag, Bohai Sea [J]. China Offshore Oil and Gas, 2011, 23(4): 225-228. doi: 10.3969/j.issn.1673-1506.2011.04.003
[14] 石文龙, 李慧勇, 茆利, 等. 沙南凹陷西洼成藏主控因素及有利勘探区带[J]. 断块油气田, 2015, 22(2):137-141
SHI Wenlong, LI Huiyong, MAO Li, et al. Main controlling factors of hydrocarbon accumulation and favorable exploration zone in West Shanan Sag [J]. Fault-Block Oil & Gas Field, 2015, 22(2): 137-141.
[15] 王贵文, 朱振宇, 朱广宇. 烃源岩测井识别与评价方法研究[J]. 石油勘探与开发, 2002, 29(4):50-52 doi: 10.3321/j.issn:1000-0747.2002.04.015
WANG Guiwen, ZHU Zhenyu, ZHU Guangyu. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim basin [J]. Petroleum Exploration and Development, 2002, 29(4): 50-52. doi: 10.3321/j.issn:1000-0747.2002.04.015
[16] 杨涛涛, 范国章, 吕福亮, 等. 烃源岩测井响应特征及识别评价方法[J]. 天然气地球科学, 2013, 4(2):414-422
YANG Taotao, FAN Guozhang, LV Fuliang, et al. The logging features and identification methods of source rock [J]. Natural Gas Geoscience, 2013, 4(2): 414-422.
[17] Herron S, Letendre L, Dufour M. Source rock evaluation using geochemical information from wireline logs and cores [J]. AAPG Bulletin, 1988, 72(8): 1007.
[18] Luffel D L, Guidry F K, Curtis J B. Evaluation of Devonian shale with new core and log analysis-methods [J]. Journal of Petroleum Technology, 1992, 44(11): 1192-1197. doi: 10.2118/21297-PA
[19] 刘新颖, 邓宏文, 邸永香, 等. 海拉尔盆地乌尔逊凹陷南屯组优质烃源岩发育特征[J]. 石油实验地质, 2009, 31(1):68-73 doi: 10.3969/j.issn.1001-6112.2009.01.013
LIU Xinying, DENG Hongwen, DI Yongxiang, et al. High-quality source rocks of Nantun formation in Wuerxun depression, the Hailaer basin [J]. Petroleum Geology & Experiment, 2009, 31(1): 68-73. doi: 10.3969/j.issn.1001-6112.2009.01.013
[20] 徐思煌, 朱义清. 烃源岩有机碳含量的测井响应特征与定量预测模型—以珠江口盆地文昌组烃源岩为例[J]. 石油实验地质, 2010, 32(3):290-295 doi: 10.3969/j.issn.1001-6112.2010.03.017
XU Sihuang, ZHU Yiqing. Well logs response and prediction model of organic carbon content in source rocks—a case study from the source rock of Wenchang formation in the Pearl mouth basin [J]. Petroleum Geology & Experiment, 2010, 32(3): 290-295. doi: 10.3969/j.issn.1001-6112.2010.03.017
[21] 朱光有, 金强, 张林晔. 用测井信息获取烃源岩的地球化学参数研究[J]. 测井技术, 2003, 27(2):104-109 doi: 10.3969/j.issn.1004-1338.2003.02.004
ZHU Guangyou, JIN Qiang, ZHANG Linye. Using log information to analyse the geochemical characteristics of source rocks in Jiyang Depression [J]. Well Logging Technology, 2003, 27(2): 104-109. doi: 10.3969/j.issn.1004-1338.2003.02.004
[22] 张寒, 朱光有. 利用地震和测井信息预测和评价烃源岩—以渤海湾盆地富油凹陷为例[J]. 石油勘探与开发, 2007, 34(1):55-59 doi: 10.3321/j.issn:1000-0747.2007.01.011
ZHANG Han, ZHU Guangyou. Using seismic and log information to predict and evaluate hydrocarbon source rocks: An example from rich oil depressions in Bohai Bay [J]. Petroleum Exploration and Development, 2007, 34(1): 55-59. doi: 10.3321/j.issn:1000-0747.2007.01.011
[23] 侯读杰, 张善文, 肖建新, 等. 陆相断陷湖盆优质烃源岩形成机制与成藏贡献: 以济阳坳陷为例[M]. 北京: 地质出版社, 2008.
HOU Dujie, ZHANG Shanwen, XIAO Jianxin, et al. The Formation Mechanism of High Quality Source Rocks and Their Contribution to Hydrocarbon Accumulation in The Continental Faulted Lake Basin: A Case Study of Jiyang Depression [M]. Beijing: Geological Press, 2008.
[24] 李建平, 周心怀, 吕丁友. 渤海海域古近系三角洲沉积体系分布与演化规律[J]. 中国海上油气, 2011, 23(5):293-298 doi: 10.3969/j.issn.1673-1506.2011.05.002
LI Jianping, ZHOU Xinhuai, LV Dingyou. Distribution and evolution of Paleogene delta systems in Bohai Sea [J]. China Offshore Oil and Gas, 2011, 23(5): 293-298. doi: 10.3969/j.issn.1673-1506.2011.05.002
-