压缩加载条件下含水合物沉积物蠕变特性分析

李辉, 张旭辉, 陆程, 谢鹏飞, 鲁晓兵. 压缩加载条件下含水合物沉积物蠕变特性分析[J]. 海洋地质与第四纪地质, 2023, 43(6): 217-225. doi: 10.16562/j.cnki.0256-1492.2022121901
引用本文: 李辉, 张旭辉, 陆程, 谢鹏飞, 鲁晓兵. 压缩加载条件下含水合物沉积物蠕变特性分析[J]. 海洋地质与第四纪地质, 2023, 43(6): 217-225. doi: 10.16562/j.cnki.0256-1492.2022121901
LI Hui, ZHANG Xuhui, LU Cheng, XIE Pengfei, LU Xiaobing. Analysis of creep characteristics of hydrate sediments under compressive loading[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 217-225. doi: 10.16562/j.cnki.0256-1492.2022121901
Citation: LI Hui, ZHANG Xuhui, LU Cheng, XIE Pengfei, LU Xiaobing. Analysis of creep characteristics of hydrate sediments under compressive loading[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 217-225. doi: 10.16562/j.cnki.0256-1492.2022121901

压缩加载条件下含水合物沉积物蠕变特性分析

  • 基金项目: 国家自然科学基金“水合物分解引起浅层土层中气体喷发的机理研究”(11872365)
详细信息
    作者简介: 李辉(1998—),男,硕士,工程力学专业,从事水合物研究, E-mail:LIHUI@imech.ac.cn
    通讯作者: 张旭辉(1982—),男,研究员,从事水合物关键力学问题研究,E-mail:ZhangXuhui@imech.ac.cn
  • 中图分类号: P744

Analysis of creep characteristics of hydrate sediments under compressive loading

More Information
  • 水合物开采可能诱发海底滑坡或其他工程地质灾害。实现水合物商业化开采需要中长期稳定产气,长期荷载下储层的蠕变特性是地层稳定性评价的基础力学参数。利用南海水合物储层粉黏土为试验介质在压缩加载条件下的系列固结排水蠕变测量试验结果,对粉黏土的蠕变特性进行了分析。结果表明,加载过程中,含水合物沉积物经历瞬时变形、固结变形和蠕变变形3个阶段;随着加载应力和水合物饱和度的提高,蠕变应变不断增加;修正的Singh-Mitchell蠕变模型可以较好预测不同应力水平和水合物饱和度下粉黏土的蠕变特性。

  • 加载中
  • 图 1  研究区域位置[31]

    Figure 1. 

    图 2  沉积物颗粒级配曲线图

    Figure 2. 

    图 3  试验前后的试样

    Figure 3. 

    图 4  高压固结仪实物图

    Figure 4. 

    图 5  不同饱和度下蠕变全过程曲线图

    Figure 5. 

    图 6  变形过程三阶段示意图

    Figure 6. 

    图 7  无水合物沉积物应变率和时间的曲线

    Figure 7. 

    图 8  无水合物试样$ \text{lg}{ \varepsilon }\;\text{vs lg}{t} $蠕变特性曲线

    Figure 8. 

    图 9  $ \text{ln}{{ \varepsilon }}_{\text{r}}\text{}\;\text{vs}\;\text{}{{D}}_{\text{r}} $关系拟合曲线

    Figure 9. 

    图 10  无水合物模型计算曲线和试验值对比

    Figure 10. 

    图 11  经典模型和修正模型参数$ \text{A} $对比图

    Figure 11. 

    图 12  不同水合物饱和度模型计算曲线和试验值对比

    Figure 12. 

    表 1  Singh-Mitchell蠕变模型中参数计算值

    Table 1.  Parameter values of the Singh-Mitchell creeping model

    水合物饱和度σ / MPaDrBβλTr / min
    00.50.513.30.2060.01251
    2.02.013.30.2060.01011
    3.03.013.30.2060.00811
    下载: 导出CSV

    表 2  修正的 Singh-Mitchell 蠕变模型参数值

    Table 2.  Parameter values of modified Singh-Mitchell creeping model

    水合物饱和度/ %σ / MPaDrA(1+SH)αβλ
    200.50.514.230.2000.0123
    2.02.014.230.2000.0160
    3.03.014.230.2000.0114
    600.50.515.830.1920.0061
    2.02.015.830.1920.0117
    3.03.015.830.1920.0074
    800.50.516.530.2260.0076
    2.02.016.530.2260.0092
    3.03.016.530.2260.0064
    下载: 导出CSV
  • [1]

    李鹏, 张旭辉, 刘乐乐, 等. 深海天然气水合物机械-热联合开采方法研究综述[J]. 力学学报, 2022, 54(8):2269-2286

    LI Peng, ZHANG Xuhui, LIU Lele, et al. Review on the mechanical-thermal combined exploitation methods of deep sea natural gas hydrate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8):2269-2286.

    [2]

    魏纳, 白睿玲, 周守为, 等. 碳达峰目标下中国深海天然气水合物开发战略[J]. 天然气工业, 2022, 42(2):156-165

    WEI Na, BAI Ruiling, ZHOU Shouwei, et al. China ’s deepwater gas hydrate development strategies under the goal of carbon peak[J]. Natural Gas Industry, 2022, 42(2):156-165.

    [3]

    Sloan E D Jr. Clathrate Hydrates of Natural Gases[M]. 2nd ed. New York: Marcel Dekker, 1998.

    [4]

    鲁晓兵, 张旭辉, 王平康, 等. 天然气水合物成藏动力学研究进展[J]. 中国科学: 物理学 力学 天文学, 2019, 49(3): 034605

    LU Xiaobing, ZHANG Xuhui, WANG Pingkang, et al. Advances of formation dynamics of natural gas hydrate[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(3): 034605.

    [5]

    祝有海, 庞守吉, 王平康, 等. 中国天然气水合物资源潜力及试开采进展[J]. 沉积与特提斯地质, 2021, 41(4):524-535

    ZHU Youhai, PANG Shouji, WANG Pingkang, et al. A review of the resource potentials and test productions of natural gas hydrates in China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4):524-535.

    [6]

    Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1):5-16. doi: 10.31035/cg2018003

    [7]

    Mao P X, Sun J X, Ning F L et al. Effect of permeability anisotropy on depressurization-induced gas production from hydrate reservoirs in the South China Sea[J]. Energy Science & Engineering, 2020, 8(8):2690-2707.

    [8]

    张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10):3069-3074

    ZHANG Xuhui, WANG Shuyun, LI Qingping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10):3069-3074.

    [9]

    Zhang X H, Liu L L, Zhou J B, et al. A model for the elastic modulus of hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2015, 25(4):314-319.

    [10]

    Hyodo M, Wu Y, Nakashima K, et al. Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(10):7511-7524. doi: 10.1002/2017JB014154

    [11]

    Lei L, Santamarina J C. Physical properties of fine-grained sediments with segregated hydrate lenses[J]. Marine and Petroleum Geology, 2019, 109:899-911. doi: 10.1016/j.marpetgeo.2019.08.053

    [12]

    Winters W J, Dallimore S R, Collett T S, et al. Relation between gas hydrate and physical properties at the mallik 2L-38 research well in the mackenzie delta[J]. Annals of the New York Academy of Sciences, 2000, 912(1):94-100. doi: 10.1111/j.1749-6632.2000.tb06762.x

    [13]

    Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3):127-135. doi: 10.1016/j.petrol.2006.02.003

    [14]

    Masui A, Haneda H, Ogata Y, et al. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan[C]//Seventh ISOPE Ocean Mining Symposium. Lisbon: ISOPE, 2007.

    [15]

    Lee J Y, Santamarina J C, Ruppel C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates[J]. Marine and Petroleum Geology, 2008, 25(9):884-895. doi: 10.1016/j.marpetgeo.2008.01.019

    [16]

    Ren J J, Yin Z Y, Li Q P, et al. Pore-scale investigation of CH4 hydrate kinetics in clayey-silty sediments by low-field NMR[J]. Energy & Fuels, 2022, 36(24):14874-14887.

    [17]

    Lu C, Xie P F, Li H, et al. Study on the mechanical properties of silty clay sediments with nodular hydrate occurrence[J]. Journal of Marine Science and Engineering, 2022, 10(8):1059. doi: 10.3390/jmse10081059

    [18]

    Xie P F, Yang L, Liang Q Y, et al. Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea[J]. China Geology, 2022, 5(2):300-309.

    [19]

    Zhang J D, Liu X H, Chen D Y, et al. An investigation on the permeability of hydrate-bearing sediments based on pore-scale CFD simulation[J]. International Journal of Heat and Mass Transfer, 2022, 192:122901. doi: 10.1016/j.ijheatmasstransfer.2022.122901

    [20]

    Yao Y X, Guo Z H, Zeng J M, et al. Discrete element analysis of hydraulic fracturing of methane hydrate-bearing sediments[J]. Energy & Fuels, 2021, 35(8):6644-6657.

    [21]

    秦绪文, 陆程, 王平康, 等. 中国南海天然气水合物开采储层水合物相变与渗流机理: 综述与展望[J]. 中国地质, 2022, 49(3):749-769

    QIN Xuwen, LU Cheng, WANG Pingkang, et al. Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect[J]. Geology in China, 2022, 49(3):749-769.

    [22]

    李军世, 林咏梅. 上海淤泥质粉质黏土的Singh-Mitchell蠕变模型[J]. 岩土力学, 2000, 21(4):363-366

    LI Junshi, LIN Yongmei. Singh-mitchell creep model of Shanghai very soft silt clay[J]. Rock and Soil Mechanics, 2000, 21(4):363-366.

    [23]

    杨超, 汪稔, 孟庆山. 软土三轴剪切蠕变试验研究及模型分析[J]. 岩土力学, 2012, 33(S1):105-111

    YANG Chao, WANG Ren, MENG Qingshan. Study of soft soil triaxial shear creep test and model analysis[J]. Rock and Soil Mechanics, 2012, 33(S1):105-111.

    [24]

    王琛, 张永丽, 刘浩吾. 三峡泄滩滑坡滑动带土的改进Singh-Mitchell蠕变方程[J]. 岩土力学, 2005, 26(3):415-418

    WANG Chen, ZHANG Yongli, LIU Haowu. A modified Singh-Mitchell’s creep function of sliding zone soils of Xietan landslide in Three Gorges[J]. Rock and Soil Mechanics, 2005, 26(3):415-418.

    [25]

    余云燕, 罗崇亮, 王堃, 等. 非饱和盐渍土三轴蠕变试验与模型分析[J]. 东南大学学报: 自然科学版, 2022, 52(4): 704-711

    YU Yunyan, LUO Chongliang, WANG Kun, et al. Triaxial creep test and model analysis of unsaturated saline soil[J]. Journal of Southeast University: Natural Science Edition, 2022, 52(4): 704-711.

    [26]

    罗庆姿, 陈晓平, 王盛, 等. 软黏土变形时效性的试验及经验模型研究[J]. 岩土力学, 2016, 37(1):66-75

    LUO Qingzi, CHEN Xiaoping, WANG Sheng, et al. An experimental study of time-dependent deformation behaviour of soft soil and its empirical model[J]. Rock and Soil Mechanics, 2016, 37(1):66-75.

    [27]

    Lai X L, Wang S M, Qin H B, et al. Unsaturated creep tests and empirical models for sliding zone soils of Qianjiangping landslide in the Three Gorges[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(2):149-154. doi: 10.3724/SP.J.1235.2010.00149

    [28]

    刘业科, 邓志斌, 曹平, 等. 软黏土的三轴蠕变试验与修正的Singh-Mitchell蠕变模型[J]. 中南大学学报:自然科学版, 2012, 43(4):1440-1446

    LIU Yeke, DENG Zhibin, CAO Ping, et al. Triaxial creep test and modified Singh-Mitchell creep model of soft clay[J]. Journal of Central South University:Science and Technology, 2012, 43(4):1440-1446.

    [29]

    王竟宇, 王志良, 申林方, 等. 单向压缩状态下滇池泥炭土的蠕变特性研究[J]. 地下空间与工程学报, 2020, 16(6):1689-1695,1704

    WANG Jingyu, WANG Zhiliang, SHEN Linfang, et al. Study on consolidation creep properties of dianchi peaty soil under one-dimensional compression[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6):1689-1695,1704.

    [30]

    吴能友, 李彦龙, 刘乐乐, 等. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 2021, 41(5):3-11

    WU Nengyou, LI Yanlong, LIU Lele, et al. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5):3-11.

    [31]

    吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1):2-8

    WU Shiguo, WANG Jiliang. On the China’s successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin, 2018, 63(1):2-8.

    [32]

    帅庆伟, 徐云霞, 文鹏飞, 等. 非线性层析技术在琼东南天然气水合物成像中的应用[J]. 海洋地质与第四纪地质, 2020, 40(3):206-213

    SHUAI Qingwei, XU Yunxia, WEN Pengfei, et al. Application of non-linear tomography technology to gas hydrate imaging in the Qiongdongnan area[J]. Marine Geology & Quaternary Geology, 2020, 40(3):206-213.

    [33]

    张良华, 张旭辉, 鲁晓兵, 等. 水合物分解后沉积物的压缩固结变形试验研究[C]//中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 3255-3260

    ZHANG Lianghua, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on compression consolidation deformation of sedimentas after hydrate dissociation[C]//CCTAM 2019. Hangzhou: Chinese Society of Theoretical and Applied Mechanics, 2019: 3255-3260.

    [34]

    Singh A, Mitchell J K. General stress-strain-time function for soils[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(1):21-46. doi: 10.1061/JSFEAQ.0001084

    [35]

    Simpson B. Retaining structures: displacement and design[J]. Géotechnique, 1992, 42(4):541-576.

    [36]

    石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3):521-528

    SHI Yaohong, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):521-528.

    [37]

    刘林, 姚仰平, 张旭辉, 等. 含水合物沉积物的弹塑性本构模型[J]. 力学学报, 2020, 52(2):556-566

    LIU Lin, YAO Yangping, ZHANG Xuhui, et al. An elastoplastic constitutive model for gas hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2):556-566.

    [38]

    宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24

    NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8):1-24.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  964
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2022-12-19
修回日期:  2023-03-22
刊出日期:  2023-12-28

目录