The influence of reservoir and exploitation parameters on production capacity of gas hydrate
-
摘要:
开展储层参数和开采参数对天然气水合物开采产能影响的研究有助于其实际开采场址和开采方法的选择。以中国南海神狐海域SH7站位的地质参数为背景,采用TOUGH+HYDRATE软件系统地分析了储层压力、温度、孔隙度、水合物饱和度、渗透率、上覆层和下伏层渗透率等储层参数,以及降压幅度、降压井长度和出砂堵塞(通过改变井周网格渗透率反映出砂堵塞)等开采参数对天然气水合物降压开采产能的影响。数值模拟结果表明:①随着储层渗透率的增大,产气量有明显的增加;随着储层压力、孔隙度的增大以及上覆层和下伏层渗透率的减小,产气量有较大的增加;随着储层温度的增大,产气量有一定的增加;产气量随饱和度的增大先增大后减小。因此,实际开采时可优先选择渗透率大、上覆层和下伏层渗透率小、孔隙度大、温度较高、水合物饱和度适中的储层。②随着降压幅度的增大以及降压井长度增大,产气量有明显的增加;而随着出砂堵塞程度的加剧,产气量有非常明显的减少。因此,实际开采时可以通过增大降压幅度和降压井长度以及采取减轻出砂堵塞的措施来提高产气量。研究结果可以为我国将来天然气水合物开采区域及开采方式的选择和确定提供参考。
-
关键词:
- 天然气水合物 /
- 降压开采 /
- TOUGH+HYDRATE /
- 储层参数 /
- 开采参数
Abstract:Studying the effects of reservoir parameters and exploitation parameters on the production capacity of natural gas hydrate is helpful for locating mining site and choosing mining method. Using the geological parameters of Station SH7 in the Shenhu sea area of South China Sea as the background, the effects of reservoir parameters including reservoir pressure, reservoir temperature, reservoir porosity, hydrate saturation, reservoir permeability, and the permeabilities of upper and lower layers, as well as the exploitation parameters including depressurization amplitude, the length of depressurization well, and sand blockage (which is reflected by changing the permeability of grid surrounding well), on gas hydrate production capacity by depressurization were numerically simulated and systematically analyzed with TOUGH+HYDRATE software. Results show that first, the gas production increased obviously with the increase of reservoir permeability. The gas production increased relatively with increase in reservoir pressure and reservoir porosity, and with the decrease in permeability of upper and lower layers. The gas production increased to some degree with the increase of reservoir temperature. The gas production increased first and then decreased with the increase of saturation. Therefore, in practical work, it is suggested to choose preferentially the reservoir with high permeability, high porosity, high temperature, low permeability of the upper and lower layers, and moderate hydrate saturation. Secondly, the gas production increased obviously with the increase of the depressurization amplitude and the length of depressurization well but decreased significantly with the degree of sand blockage. Therefore, it is suggested to increase the depressurization degree and the length of production well, and to reduce the sand blockage for increasing the gas production. This study provided a reference for the selection and determination of the site and method of gas-hydrate mining in China in the future.
-
-
表 1 模型参数
Table 1. Model parameters
模型参数 取值 上覆层厚度/m 30 水合物层厚度/m 22 下伏层厚度/m 30 水合物层压力/MPa 13.5 水合物层温度/℃ 14 地热梯度/(℃·m−1) 0.043 盐度 0.03 水合物饱和度SH 0.44 水的饱和度SA 0.56 固有渗透性/μm2 0.075 孔隙度 0.41 固相颗粒密度/(kg·m−3) 2 600 复合导热系数模型
[26]$ \begin{gathered} {k_{{\text{θ C}}}} = {k_{{\text{θ RD}}}} + (S_{\text{A}}^{1/2} + S_{\text{H}}^{1/2}) \\ ({k_{{\text{θ RW}}}} - {k_{{\text{θ RD}}}}) + \phi {S_{\text{I}}}{k_{{\text{θ I}}}} \\ \end{gathered} $ 干导热系数kθRD/(W·m−1·K−1) 1.0 湿导热系kθRW/(W·m−1·K−1) 3.1 相对渗透率模型
[26]$ {k_{{\text{rA}}}} = {(S_{\text{A}}^ * )^n} $ $ {k_{{\text{rG}}}} = {(S_{\text{G}}^ * )^{{n_{\text{G}}}}} $ $ S_{\text{A}}^ * = ({S_{\text{A}}} - {S_{{\text{irA}}}})/(1 - {S_{{\text{irA}}}}) $ $ S_{\text{G}}^ * = ({S_{\text{G}}} - {S_{{\text{irG}}}})/(1 - {S_{{\text{irA}}}}) $ n 3.5 nG 3.5 SirA 0.3 SirG 0.05 毛细管压力模型
[30]$ {P_{{\text{cap}}}} = - {P_0}{\left[ {{{(S*)}^{ - 1/\lambda }} - 1} \right]^{1 - \lambda }} $ $ S* = ({S_{\text{A}}} - {S'_{{\text{irA}}}})/(1 - {S'_{{\text{irA}}}}) $ $ {S'_{{\text{irA}}}} $ 0.29 λ 0.45 P0/Pa 1.0×105 表中:Pcap为毛细管压力,SirA为相对渗透率模型中的束缚水饱和度, $ {S'_{{\text{irA}}}} $ 为毛细管压力模型中的束缚水饱和度,SirG为束缚气饱和度,n为渗透率降低指数,nG为气体渗透率降低指数,λ为van Genuchten指数。表 2 数值模拟方案
Table 2. The numerical simulation scheme
影响因素 储层压力/
MPa储层温度/
℃储层孔隙度 水合物饱和度 储层渗透率/
μm2上、下层渗
透率/μm2井口压力/
MPa降压井长度/
m井周渗透率/
μm2储层压力 13.5、14.5、15.5、16.5 10.5 0.44 0.41 0.075 0.075 4 8 0.075 储层温度 13.5 9、9.5、10、10.5 0.44 0.41 0.075 0.075 4 8 0.075 储层孔隙度 13.5 10.5 0.35、0.38、0.41、0.44 0.41 0.075 0.075 4 8 0.075 水合物饱和度 13.5 10.5 0.44 0.2、0.24、0.28、0.32、0.36、0.4、0.44、0.48、0.52 0.075 0.075 4 8 0.075 储层渗透率 13.5 10.5 0.44 0.41 0.005、0.025、0.05、0.075 0.075 4 8 0.075 上、下层渗透率 13.5 10.5 0.44 0.41 0.075 0.005、0.025、0.05、0.075 4 8 0.075 降压幅度 13.5 10.5 0.44 0.41 0.075 0.075 2、4、6、8 8 0.075 降压井长度 13.5 10.5 0.44 0.41 0.075 0.075 4 4、8、12、16 0.075 出砂堵塞 13.5 10.5 0.44 0.41 0.075 0.075 4 8 0.00075、0.0075、0.075 表 3 储层和开采参数对5年累积产气量和气水比的影响
Table 3. The effects of reservoir and exploitation parameters on 5-year cumulative gas production and gas-water ratio
影响因素 5年产气量/106 m3 影响程度 气水比 影响程度 储层参数 储层压力(13.5、14.5、15.5、16.5 MPa) 2.21、2.30、2.45、2.57 ++ 1.25、1.13、1.09、1.05 -- 储层温度(9.0、9.5、10.0、10.5℃) 2.14、2.15、2.15、2.21 + 1.20、1.20、1.20、1.25 + 储层孔隙度(0.35、0.38、0.41、0.44) 2.1、2.16、2.21、2.26 ++ 1.17、1.20、1.25、1.25 ++ 水合物饱和度(0.2、0.28、0.36、0.44) 2.22、2.30、2.28、2.22 ++(--) 1.22、1.81、1.27、1.24 ++(--) 储层渗透率(0.005、0.025、0.05、0.075 μm2) 0.45、1.12、1.7、2.21 +++ 6、2.2、1.5、1.25 -- 上覆和下伏层渗透率(0.005、0.025、0.05、0.075 μm2) 4.0、2.77、2.4、2.21 -- 4.0、1.87、1.42、1.25 -- 开采参数 降压幅度(5.5、7.5、9.5、11.5 MPa) 1.62、1.94、2.21、2.46 +++ 1.90、1.96、2.17、2.57 ++ 降压井长度(4、8、12、16 m) 1.77、2.21、2.55、2.7 +++ 1.6、1.25、1.06、0.98 -- 出砂堵塞(0.075、0.0075、0.00075μm2) 2.21、1.25、0.76 --- 1.25、2.24、7.07 ++ -
[1] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1: 5-16. doi: 10.31035/cg2018003
[2] 阮徐可, 杨明军, 李洋辉, 等. 不同形式天然气水合物藏开采技术的选择研究综述[J]. 天然气勘探与开发, 2012, 35(2):39-43 doi: 10.3969/j.issn.1673-3177.2012.02.011
RUAN Xuke, YANG Mingjun, LI Yanghui, et al. Selection of recovery technology for gas hydrate with different storage forms [J]. Natural Gas Exploration and Development, 2012, 35(2): 39-43. doi: 10.3969/j.issn.1673-3177.2012.02.011
[3] 张旭辉, 鲁晓兵, 刘乐乐. 天然气水合物开采方法研究进展[J]. 地球物理学进展, 2014, 29(2):858-869 doi: 10.6038/pg20140252
ZHANG Xuhui, LU Xiaobing, LIU Lele. Advances in natural gas hydrate recovery methods [J]. Progress in Geophysics, 2014, 29(2): 858-869. doi: 10.6038/pg20140252
[4] 赵景芳, 宋林松, 吉飞, 等. 天然气水合物降压开采储层出砂数值模拟[J]. 中国海上油气, 2019, 31(2):116-124 doi: 10.11935/j.issn.1673-1506.2019.02.014
ZHAO Jingfang, SONG Linsong, JI Fei, et al. Numerical simulation of reservoir sand production during gas hydrate depressurizing production [J]. China Offshore Oil and Gas, 2019, 31(2): 116-124. doi: 10.11935/j.issn.1673-1506.2019.02.014
[5] 方翔宇. 不同储层因素下含水合物沉积物降压开采出砂规律实验研究[D]. 中国地质大学博士学位论文, 2021
FANG Xiangyu. Experimental study on sand production law of hydrate-bearing sediments by depressurization under different reservoir factors[D]. Doctor Dissertation of China University of Geosciences, 2021.
[6] 朱慧星. 天然气水合物开采储层出砂过程及对产气影响的数值模型研究[D]. 吉林大学博士学位论文, 2021
ZHU Huixing. Numerical study on sand production processes during natural gas hydrate recovery and its impact on gas production[D]. Doctor Dissertation of Jilin University, 2021.
[7] Kurihara M, Sato A, Funatsu K, et al. Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada[C]//CPS/SPE International Oil and Gas Conference and Exhibition in China. Beijing, China: SPE, 2010: 132155.
[8] 李淑霞, 陈月明, 杜庆军. 天然气水合物开采数值模拟的参数敏感性分析[J]. 现代地质, 2005, 19(1):108-112 doi: 10.3969/j.issn.1000-8527.2005.01.016
LI Shuxia, CHEN Yueming, DU Qingjun. Sensitivity analysis in numerical simulation of natural gas hydrate production [J]. Geoscience, 2005, 19(1): 108-112. doi: 10.3969/j.issn.1000-8527.2005.01.016
[9] Grover T, Holditch S A, Moridis G. Analysis of reservoir performance of Messoyakha gas hydrate field[C]//Proceedings of the Eighteenth International Offshore and Polar Engineering Conference. Vancouver, Canada: ISOPE, 2008: ISOPE-I-08-399.
[10] 李刚, 李小森, ZHANG Keni, 等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报, 2011, 54(9):2325-2337 doi: 10.3969/j.issn.0001-5733.2011.09.016
LI Gang, LI Xiaosen, ZHANG Keni, et al. Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu area, South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(9): 2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016
[11] Su Z, He Y, Wu N Y, et al. Evaluation on gas production potential from laminar hydrate deposits in Shenhu area of South China Sea through depressurization using vertical wells [J]. Journal of Petroleum Science and Engineering, 2012, 86-87: 87-98. doi: 10.1016/j.petrol.2012.03.008
[12] 吴能友, 黄丽, 苏正, 等. 海洋天然气水合物开采潜力地质评价指标研究: 理论与方法[J]. 天然气工业, 2013, 33(7):11-17 doi: 10.3787/j.issn.1000-0976.2013.07.002
WU Nengyou, HUANG Li, SU Zheng, et al. A study of geological evaluation indicators for the exploitation potential of marine natural gas hydrates: Theory and methodology [J]. Natural Gas Industry, 2013, 33(7): 11-17. doi: 10.3787/j.issn.1000-0976.2013.07.002
[13] Huang L, Su Z, Wu N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits [J]. Marine and Petroleum Geology, 2016, 77: 19-29. doi: 10.1016/j.marpetgeo.2016.05.034
[14] 刘建军, 邵祖亮, 郑永香. 天然气水合物降压分解过程的数值模拟[J]. 西南石油大学学报:自然科学版, 2017, 39(1):80-90
LIU Jianjun, SHAO Zuliang, ZHENG Yongxiang. Numerical simulation of the decomposition of natural gas hydrates by depressurization [J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2017, 39(1): 80-90.
[15] 彭盈钰, 金光荣, 苏正, 等. 天然气水合物开采的关键地质参数敏感性研究[J]. 新能源进展, 2021, 9(2):133-142 doi: 10.3969/j.issn.2095-560X.2021.02.007
PENG Yingyu, JIN Guangrong, SU Zheng, et al. Sensitivity study on key geological parameters of gas hydrate production [J]. Advances in New and Renewable Energy, 2021, 9(2): 133-142. doi: 10.3969/j.issn.2095-560X.2021.02.007
[16] 梁伟, 赵同彬, 陈中伟, 等. 天然气水合物分解-两相渗流数值模拟研究[J]. 山东科技大学学报:自然科学版, 2020, 39(2):53-60,68
LIANG Wei, ZHAO Tongbin, CHEN Zhongwei, et al. Numerical simulation study on natural gas hydrate decomposition-two phase flow [J]. Journal of Shandong University of Science and Technology:Natural Science, 2020, 39(2): 53-60,68.
[17] 王自豪, 万义钊, 刘乐乐, 等. 含水合物沉积物相对渗透率研究进展[J]. 海洋地质前沿, 2022, 38(2):14-29 doi: 10.16028/j.1009-2722.2020.124
WANG Zihao, WAN Yizhao, LIU Lele, et al. Research advances in gas-water relative permeability of hydrate-bearing sediments [J]. Marine Geology Frontiers, 2022, 38(2): 14-29. doi: 10.16028/j.1009-2722.2020.124
[18] 苏正, 吴能友, 张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿, 2011, 27(6):16-23 doi: 10.16028/j.1009-2722.2011.06.002
SU Zheng, WU Nengyou, ZHANG Keni. Assessment of gas production potential of hydrate deposits at Shenhu area on northern continental slope of South China Sea [J]. Marine Geology Frontiers, 2011, 27(6): 16-23. doi: 10.16028/j.1009-2722.2011.06.002
[19] 宋永臣, 梁海峰, 王志国. 天然气水合物降压开采数值模拟及影响因素分析[J]. 大连理工大学学报, 2009, 49(2):199-204 doi: 10.7511/dllgxb200902008
SONG Yongchen, LIANG Haifeng, WANG Zhiguo. Numerical simulation for natural gas produced from hydrate and analysis of influence factors [J]. Journal of Dalian University of Technology, 2009, 49(2): 199-204. doi: 10.7511/dllgxb200902008
[20] Oyama H, Konno Y, Masuda Y, et al. Dependence of depressurization-induced dissociation of methane hydrate bearing laboratory cores on heat transfer [J]. Energy & Fuels, 2009, 23(10): 4995-5002.
[21] 李淑霞, 刘佳丽, 武迪迪, 等. 神狐海域水合物藏降压开采的数值模拟[J]. 科学技术与工程, 2018, 18(24):38-43 doi: 10.3969/j.issn.1671-1815.2018.24.006
LI Shuxia, LIU Jiali, WU Didi, et al. Numerical study of hydrate depressurization dissociation in Shenhu area [J]. Science Technology and Engineering, 2018, 18(24): 38-43. doi: 10.3969/j.issn.1671-1815.2018.24.006
[22] Yu L, Zhang L, Zhang R, et al. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method [J]. Energy, 2018, 160: 654-667. doi: 10.1016/j.energy.2018.07.050
[23] 袁益龙. 海洋天然气水合物降压开采潜力及力学稳定性数值模拟研究[D]. 吉林大学博士学位论文, 2019
YUAN Yilong. Numerical simulation on gas production potential and the geo-mechanical stability from marine natural gas hydrate through depressurization[D]. Doctor Dissertation of Jilin University, 2019.
[24] 卢静生, 李栋梁, 何勇, 等. 海洋天然气水合物开发产能及出砂研究[J]. 新能源进展, 2020, 8(3):227-233 doi: 10.3969/j.issn.2095-560X.2020.03.009
LU Jingsheng, LI Dongliang, HE Yong, et al. Study on productivity and sand production of marine natural gas hydrate development [J]. Advances in New and Renewable Energy, 2020, 8(3): 227-233. doi: 10.3969/j.issn.2095-560X.2020.03.009
[25] 梁吉凯, 郝永卯, 杨帆, 等. 南海神狐天然气水合物藏水平井产能及泥砂堵塞评价[C]//2021油气田勘探与开发国际会议论文集. 青岛: 西安石油大学, 2021: 617-624
LIANG Jikai, HAO Yongmao, YANG Fan, et al. Evaluation of production capacity and sand blockage of South China Sea Shenhu natural gas hydrate reservoir by horizontal wells[C]//Proceedings of International Field Exploration and Development Conference. Qingdao: Xi’an Shiyou University, 2021: 617-624.
[26] Moridis G J, Kowalsky M B, Pruess K. TOUGH+HYDRATE v1.2 user's manual: A code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley: Lawrence Berkeley National Laboratory, 2012.
[27] 李刚, 李小森, 陈琦, 等. 南海神狐海域天然气水合物开采数值模拟[J]. 化学学报, 2010, 68(11):1083-1092
LI Gang, LI Xiaosen, CHEN Qi, et al. Numerical simulation of gas production from gas hydrate zone in Shenhu area, South China Sea [J]. Acta Chimica Sinica, 2010, 68(11): 1083-1092.
[28] Moridis G J, Collett T S, Boswell R, et al. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential [J]. SPE Reservoir Evaluation & Engineering, 2009, 12(5): 745-771.
[29] Li G, Moridis G J, Zhang K N, et al. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu area of South China Sea [J]. Journal of Petroleum Science and Engineering, 2011, 77(1): 49-68. doi: 10.1016/j.petrol.2011.02.009
[30] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
[31] 李清平, 周守为, 赵佳飞, 等. 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3):214-224
LI Qingping, ZHOU Shouwei, ZHAO Jiafei, et al. Research status and prospects of natural gas hydrate exploitation technology [J]. Strategic Study of CAE, 2022, 24(3): 214-224.
-