水下考古地球物理技术进展、挑战及建议

李勇航, 温明明, 陈宗恒, 姚会强, 万芃, 李斌, 林海, 陈志坚. 水下考古地球物理技术进展、挑战及建议[J]. 海洋地质与第四纪地质, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401
引用本文: 李勇航, 温明明, 陈宗恒, 姚会强, 万芃, 李斌, 林海, 陈志坚. 水下考古地球物理技术进展、挑战及建议[J]. 海洋地质与第四纪地质, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401
LI Yonghang, WEN Mingming, CHEN Zongheng, YAO Huiqiang, WAN Peng, LI Bin, LIN Hai, CHEN Zhijian. Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401
Citation: LI Yonghang, WEN Mingming, CHEN Zongheng, YAO Huiqiang, WAN Peng, LI Bin, LIN Hai, CHEN Zhijian. Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401

水下考古地球物理技术进展、挑战及建议

  • 基金项目: 中国地质调查局项目(DD20191009)
详细信息
    作者简介: 李勇航(1987—),男,高级工程师,从事海洋地球物理勘探与水下目标探测研究,E-mail:leo_hang@qq.com
    通讯作者: 温明明(1977—),男,正高级工程师,从事海洋地球物理勘探与深海装备研发,E-mail: wenmm@21cn.com
  • 中图分类号: P737.2

Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey

More Information
  • 水下考古涉及不同的调查阶段,其调查范围、水下环境、调查目标存在很大差异,对应使用的调查技术和策略也不同。系统分析了常规的和最前沿的水下考古地球物理及潜水器技术的现状和优缺点,包括声学(多波束、侧扫声呐、浅地层剖面、单道/小多道地震)、磁力、电磁法、激光雷达、潜水器(HOV、ROV、AUV)等。目前水下考古在海床遗存图像识别、埋藏的小尺寸人工遗物探测、洞穴遗存的探测发掘、潮间带遗存探测和深海考古发掘等方面仍存在大量挑战。建议通过加强海洋行业合作,升级改进现有调查技术,建立技术装备共享机制,从而提升考古遗址发现数量和几率,避免遗址受破坏流失,降低考古经济成本。

  • 加载中
  • 图 1  水下考古遗址海平面重建 [3]

    Figure 1. 

    图 2  水下史前考古遗址及中国主要水下考古遗址的水深信息

    Figure 2. 

    图 3  典型的水下考古调查方法示意图

    Figure 3. 

    图 4  近海岛礁古沉船遗址探测

    Figure 4. 

    图 5  不同声学或地震探测技术分辨率和穿透深度

    Figure 5. 

    图 6  三维浅地层剖面系统探测考古遗址

    Figure 6. 

    图 7  机载激光雷达测深

    Figure 7. 

    图 8  利用ROV对水下遗址进行高精度水深和摄影测量[38]

    Figure 8. 

    表 1  水下考古调查的不同阶段及其规模、水下环境及相应分辨率

    Table 1.  Different stages, scale, underwater environment, and corresponding resolution of underwater archaeological survey

    调查阶段调查范围水下环境分辨率
    区域预查百千米级大陆架十米级
    潜力区普查十千米级河系米级
    重点区详查千米级河谷分米级
    遗址勘探十米级结构、层位分米级
    遗址发掘/恢复/保存米或分米级人工遗物厘米级
    下载: 导出CSV

    表 2  水下考古主要地球物理技术及其数据信息类型

    Table 2.  Main geophysical techniques and data information types of underwater archaeology

    技术分类调查技术探测分辨率数据信息类型
    声学侧扫声呐(多脉冲、多波束声呐等)分米级海底地形地貌、水下裸露/半掩埋目标物
    合成孔径声呐厘米级
    三维扫描声呐厘米级
    条带多波束测深米级
    声学常规声学浅剖分米级浅部地层结构(二维)、浅埋目标物
    Chirp浅剖分米级
    参量浅剖厘米级
    Boomer单道地震分米或米级
    电火花单道地震米级
    电火花小多道地震分米级
    Chirp/参量/合成孔径三维浅剖(3D Chirp、SES2000 Quattro、
    SBI、海底鹰等)
    厘米级浅部地层结构(三维)、浅埋目标物
    磁力/电磁磁力(梯度)测量亚米级磁力剖面和磁异常平面
    电磁测量米级电阻率剖面
    光学机载LiDAR测深分米级岸滩、浅水地形
    潜水器平台HOV、ROV、AUV及其任务载荷技术声学影像/光学摄像/海水、沉积物样品/岩芯等
    下载: 导出CSV
  • [1]

    丁见祥. 浅谈大陆架考古及其意义[J]. 中国文化遗产, 2022, 111(5):79-89 doi: 10.3969/j.issn.1672-7819.2022.05.018

    DING Jianxiang. Archaeology of continental shelf and its implications: a brief discussion [J]. China Cultural Heritage, 2022, 111(5): 79-89. doi: 10.3969/j.issn.1672-7819.2022.05.018

    [2]

    Chappell J, Shackleton N J. Oxygen isotopes and sea level [J]. Nature, 1986, 324(6093): 137-140. doi: 10.1038/324137a0

    [3]

    Galili E, Benjamin J, Hershkovitz I, et al. Atlit-Yam: a unique 9000 year old prehistoric village submerged off the Carmel coast, Israel-the SPLASHCOS field school (2011)[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 85-102.

    [4]

    Flemming N C, Çağatay M N, Chiocci F L, et al. Land Beneath the Waves: Submerged Landscapes and Sea Level Change: A Joint Geoscience-Humanities Strategy for European Continental Shelf Prehistoric Research[M]. Oostende: European Marine Board, 2014: 171.

    [5]

    L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99

    L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99. [L'Hour M, QIU Dandan. La Lune: invent the abyssal archaeology[J]. Underwater Archaeology Survey, 2018: 83-99.

    [6]

    胡毅, 丁见祥, 房旭东, 等. 水下考古区域调查与海洋地球物理方法[J]. 科学, 2016, 68(6): 32-35

    HU Yi, DING Jianxiang, FANG Xudong, et al. 2016. Underwater archaeological area survey and Marine geophysics[J]. Science, 68(6): 32-35.

    [7]

    赵潮, 潘臻. 考古区域系统调查的理论、实践与反思[J]. 四川文物, 2015(4):91-96

    ZHAO Chao, PAN Zhen. Theory, practice and reflection on archaeological regional systematic investigation [J]. Sichuan Cultural Relics, 2015(4): 91-96.

    [8]

    马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用: 以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2):43-52 doi: 10.3969/j.issn.1001-909X.2016.02.006

    MA Yong, LI Jiabiao, WU Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology: an example from Chuan Island, Guangdong province [J]. Journal of Marine Sciences, 2016, 34(2): 43-52. doi: 10.3969/j.issn.1001-909X.2016.02.006

    [9]

    蔺爱军. 综合海洋地球物理方法在探测水下文化遗产中的应用研究: 以平潭附近海域为例[D]. 厦门: 国家海洋局第三海洋研究所, 2017

    LIN Aijun. The study of integrated marine geophysical method in detecting underwater cultural heritage: a case of nearby the waters in Pingtan[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration of China, 2017.

    [10]

    李海东, 胡毅, 许江, 等. 浅地层剖面系统在福建沿海海底沉船调查中的应用[J]. 海洋技术学报, 2019, 38(1):79-84

    LI Haidong, HU Yi, XU Jiang, et al. Application of sub-bottom profilers in the investigation of seabed shipwreck in Fujian coastal waters [J]. Journal of Ocean Technology, 2019, 38(1): 79-84.

    [11]

    Ferentinos G, Fakiris E, Christodoulou D, et al. Optimal sidescan sonar and subbottom profiler surveying of ancient wrecks: the ‘Fiskardo’ wreck, Kefallinia Island, Ionian Sea [J]. Journal of Archaeological Science, 2020, 113: 105032. doi: 10.1016/j.jas.2019.105032

    [12]

    胡毅, 丁见祥, 房旭东, 等. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10):1081-1091 doi: 10.11867/j.issn.1001-8166.2019.10.1081

    HU Yi, DING Jianxiang, FANG Xudong, et al. Control experiments for underwater cultural relics survey by marine geophysical of acoustics [J]. Advances in Earth Science, 2019, 34(10): 1081-1091. doi: 10.11867/j.issn.1001-8166.2019.10.1081

    [13]

    蒲进菁, 李太春, 唐梓力, 等. 无人船在近浅海水下考古领域的工程实践[J]. 海洋测绘, 2022, 42(3):52-55 doi: 10.3969/j.issn.1671-3044.2022.03.012

    PU Jinjing, LI Taichun, TANG Zili, et al. A practical application of unmanned surface vehicle in the field of underwater archeology in the shallow water [J]. Hydrographic Surveying and Charting, 2022, 42(3): 52-55. doi: 10.3969/j.issn.1671-3044.2022.03.012

    [14]

    Bates C R, Lawrence M, Dean M, et al. Geophysical methods for wreck-Site monitoring: the rapid archaeological site surveying and evaluation (RASSE) programme [J]. International Journal of Nautical Archaeology, 2011, 40(2): 404-416. doi: 10.1111/j.1095-9270.2010.00298.x

    [15]

    Mallios A. Sonar scan matching for simultaneous localization and mapping in confined underwater environments[D]. Doctor Dissertation of University of Gerona, 2014.

    [16]

    Hurtado O J Z, Missiaen T, De Clercq M, et al. Comparative seismic source study for buried palaeolandscape investigations in the southern North Sea[C]//20th European Meeting of Environmental and Engineering Geophysics. Vienna: European Association of Geoscientists, 2014,doi: 10.3997/2214-4609.20142110.

    [17]

    Wunderlich J, Wendt G, Müller S. High-resolution echo-sounding and detection of embedded archaeological objects with nonlinear sub-bottom profilers [J]. Marine Geophysical Researches, 2005, 26(2-4): 123-133. doi: 10.1007/s11001-005-3712-y

    [18]

    Plets R, Dix J, Bastos A, et al. Characterization of buried inundated peat on seismic (chirp) data, inferred from core information [J]. Archaeological Prospection, 2007, 14(4): 261-272. doi: 10.1002/arp.318

    [19]

    Missiaen T. The potential of seismic imaging in marine archaeological site investigations [J]. Relicta, 2010, 6: 219-236.

    [20]

    Missiaen T, Murphy S, Loncke L, et al. Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone [J]. Continental Shelf Research, 2002, 22(16): 2291-2301. doi: 10.1016/S0278-4343(02)00056-0

    [21]

    Missiaen T. VHR marine 3D seismics for shallow water investigations: some practical guidelines [J]. Marine Geophysical Research, 2005, 26(2-4): 145-155. doi: 10.1007/s11001-005-3708-7

    [22]

    Plets R M K, Dix J K, Adams J R, et al. The use of a high-resolution 3D chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), river Hamble, UK [J]. Journal of Archaeological Science, 2009, 36(2): 408-418. doi: 10.1016/j.jas.2008.09.026

    [23]

    Wunderlich J, Lowag J. Multi-transducer parametric sub-bottom profiler to acquire high-resolution data of buried structures for 3-D visualisation[C]//11th European Conference on Underwater Acoustics. 2012: 1308-1313.

    [24]

    Boyce J I, Reinhardt E G, Raban A, et al. Marine magnetic survey of a submerged roman Harbour, Caesarea Maritima, Israel [J]. International Journal of Nautical Archaeology, 2004, 33(1): 122-136. doi: 10.1111/j.1095-9270.2004.00010.x

    [25]

    Klein G, Bohlen T, Theilen F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments [J]. Marine Geophysical Research, 2005, 26(2-4): 287-315. doi: 10.1007/s11001-005-3725-6

    [26]

    罗贤虎, 邓明, 邱宁, 等. MicrOBEM: 小型海底电磁接收机[J]. 物探与化探, 2022, 46(3):544-549

    LUO Xianhu, DENG Ming, QIU Ning, et al. MicrOBEM: a micro-ocean-bottom electromagnetic receiver [J]. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.

    [27]

    王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11):3708-3717 doi: 10.6038/cjg20131112

    WANG Meng, ZHANG Hanquan, WU Zhongliang, et al. Marine controlled source electromagnetic launch system for natural gas hydrate resource exploration [J]. Chinese Journal of Geophysics, 2013, 56(11): 3708-3717. doi: 10.6038/cjg20131112

    [28]

    Henderson R D, Day-Lewis F D, Abarca E, et al. Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA [J]. Hydrogeology Journal, 2010, 18(1): 173-185. doi: 10.1007/s10040-009-0498-z

    [29]

    Rucker D F, Noonan G E, Greenwood W J. Electrical resistivity in support of geological mapping along the Panama Canal [J]. Engineering Geology, 2011, 117(1-2): 121-133. doi: 10.1016/j.enggeo.2010.10.012

    [30]

    Passaro S. Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy) [J]. Journal of Archaeological Science, 2010, 37(8): 1989-1998. doi: 10.1016/j.jas.2010.03.004

    [31]

    Pe’eri S, Morgan L V, Philpot W D, et al. Land-water interface resolved from airborne LiDAR bathymetry (ALB) waveforms [J]. Journal of Coastal Research, 2011, 62: 75-85. doi: 10.2112/SI_62_8

    [32]

    金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估: 以中国海岸带为例[J]. 红外与激光工程, 2020, 49(S2):20200317

    JIN Dingjian, WU Fang, YU Kun, et al. Large-scale application test and evaluation of an airborne Lidar bathymetry system: a case study in China′s coastal zone [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317.

    [33]

    Pastol Y. Use of airborne LiDAR bathymetry for coastal hydrographic surveying: the French experience [J]. Journal of Coastal Research, 2011(62): 6-18.

    [34]

    宿殿鹏, 阳凡林, 陈亮, 等. 无人机载LiDAR测深系统进行海岸带测绘的可行性分析[J]. 山东科技大学学报:自然科学版, 2022, 41(5):11-20

    SU Dianpeng, YANG Fanlin, CHEN Liang, et al. Feasibility analysis of UAV-airborne LiDAR bathymetry system for coastal zone mapping [J]. Journal of Shandong University of Science and Technology:Natural Science, 2022, 41(5): 11-20.

    [35]

    连琏, 魏照宇, 陶军, 等. 无人遥控潜水器发展现状与展望[J]. 海洋工程装备与技术, 2018, 5(4):223-231 doi: 10.12087/oeet.2095-7297.2018.04.01

    LIAN Lian, WEI Zhaoyu, TAO Jun, et al. Development status and prospects of remotely operated vehicles [J]. Ocean Engineering Equipment and Technology, 2018, 5(4): 223-231. doi: 10.12087/oeet.2095-7297.2018.04.01

    [36]

    Bingham B, Foley B, Singh H, et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle [J]. Journal of Field Robotics, 2010, 27(6): 702-717. doi: 10.1002/rob.20350

    [37]

    Mahon I, Pizarro O, Johnson-Roberson M, et al. Reconstructing pavlopetri: mapping the world’s oldest submerged town using stereo-vision[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 2315-2321.

    [38]

    Mccann A M, Oleson J P. Deep-Water Shipwrecks off Skerki Bank: the 1997 Survey[M]. Journal of Roman Archaeology, 2004: 40-89.

    [39]

    丁见祥. 二〇一八年南海海域深海考古调查与思考[N]. 中国文物报, 2018-08-10(5)

    DING Jianxiang. Deep-sea archaeological survey and reflection in South China Sea in 2018[N]. China Cultural Relics Journal, 2018-08-10(5).

    [40]

    Missiaen T, Sakellariou D, Flemming N C. Survey strategies and techniques in underwater geoarchaeological research: an overview with emphasis on prehistoric sites[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 21-37.

    [41]

    Du X, Sun Y F, Song Y P, et al. A comparative study of different CNN models and transfer learning effect for underwater object classification in side-scan sonar images [J]. Remote Sensing, 2023, 15(3): 593. doi: 10.3390/rs15030593

    [42]

    Huo G Y, Wu Z Y, Li J B. Underwater object classification in Sidescan sonar images using deep transfer learning and semisynthetic training data [J]. IEEE Access, 2020, 8: 47407-47418. doi: 10.1109/ACCESS.2020.2978880

    [43]

    Ren Q Y, Grøn O, Hermand J P. On the in-situ detection of flint for underwater Stone Age archaeology[C]//Proceedings of OCEANS 2011 IEEE Conference. Santander: IEEE, 2011: 1-7,doi: 10.1109/Oceans-Spain.2011.6003529.

    [44]

    刘溢滂, 胡毅. 浅埋水下文物遗址的海洋地球物理声学探测展望: 以沉船为例[J]. 地球科学进展, 2023, 38(1):99-109 doi: 10.11867/j.issn.1001-8166.2022.078

    LIU Yipang, HU Yi. Prospect of marine geophysical acoustic detection of buried underwater cultural relics: a case study of shipwrecks [J]. Advances in Earth Science, 2023, 38(1): 99-109. doi: 10.11867/j.issn.1001-8166.2022.078

    [45]

    Gillham J. Development of a field deployable underwater laser scanning system[D]. Master Dissertation of University of Waterloo, 2011.

    [46]

    Missiaen T, Slob E, Donselaar M E. Comparing different shallow geophysical methods in a tidal estuary, Verdronken land van Saeftinge, western Scheldt, the Netherlands [J]. Netherlands Journal of Geosciences, 2008, 87(2): 151-164. doi: 10.1017/S0016774600023192

    [47]

    Delefortrie S, Saey T, Van De Vijver E, et al. Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration [J]. Journal of Applied Geophysics, 2014, 100: 14-22. doi: 10.1016/j.jappgeo.2013.10.005

    [48]

    Kruiver P, Zurita-Hurtado O, Diafera G, et al. Non-conventional techniques for marine archaeological investigations[R]. Renard Centre of Marine Geology, University of Gent, 2013.

    [49]

    Fitch S, Thomson K, Gaffney V. Late Pleistocene and Holocene depositional systems and the palaeogeography of the Dogger Bank, North Sea [J]. Quaternary Research, 2005, 64(2): 185-196. doi: 10.1016/j.yqres.2005.03.007

  • 加载中

(8)

(2)

计量
  • 文章访问数:  2187
  • PDF下载数:  384
  • 施引文献:  0
出版历程
收稿日期:  2023-02-14
修回日期:  2023-03-13
刊出日期:  2023-12-28

目录