海底峡谷浊流汇流后含沙量与速度变化研究

张子涵, 任宇鹏, 陶威, 许国辉, 靳梓堃. 海底峡谷浊流汇流后含沙量与速度变化研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301
引用本文: 张子涵, 任宇鹏, 陶威, 许国辉, 靳梓堃. 海底峡谷浊流汇流后含沙量与速度变化研究[J]. 海洋地质与第四纪地质, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301
ZHANG Zihan, REN Yupeng, TAO Wei, XU Guohui, JIN Zikun. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301
Citation: ZHANG Zihan, REN Yupeng, TAO Wei, XU Guohui, JIN Zikun. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301

海底峡谷浊流汇流后含沙量与速度变化研究

  • 基金项目: 国家自然科学基金“海底峡谷弱稳定沉积物推动式剪切破坏传播及其对沉积地层的影响”(42206055), “风暴浪作用下海底高浓度含沙层形成过程的观测研究”(41976049)
详细信息
    作者简介: 张子涵(1998—),女,硕士研究生,从事海洋工程地质研究,E-mail:zihanzhang513@163.com
    通讯作者: 许国辉(1972—),男,博士,教授,主要从事海洋工程地质研究,E-mail:xuguohui@ouc.edu.cn
  • 中图分类号: P736

Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon

More Information
  • 高速的浊流具有强大的破坏力,威胁着海底结构物的安全。海底峡谷是浊流向深海运动的重要通道,其中许多海底峡谷具有多条分支峡谷,而分支峡谷与主干峡谷浊流发生汇流后,含沙量、速度可能会增加,进而破坏力增强。本文通过室内水槽试验和数值模拟,研究了分支峡谷中的浊流汇流到主干峡谷中含沙量和速度的变化,并与仅有主干峡谷浊流的情景进行了对比。研究发现,发生汇流时,浊流的高度、含沙量和速度在头部均有增加,在汇流发生过后会有所减小,但含沙量和速度仍大于不发生汇流时的情况。本文试验结果可为有分支峡谷发生浊流汇流的现场监测位置及项目、速度推算提供指引。

  • 加载中
  • 图 1  海底峡谷汇流模型概况图

    Figure 1. 

    图 2  取样盒示意图

    Figure 2. 

    图 3  试验土样的粒度级配曲线

    Figure 3. 

    图 4  总含沙量随初始配置浊流含沙量的变化

    Figure 4. 

    图 5  主流和汇流情景下浊流各层含沙量随初始浊流含沙量的变化

    Figure 5. 

    图 6  数值模拟模型构建

    Figure 6. 

    图 7  初始含沙量为200 g/L的浊流模拟流速与实测流速对比

    Figure 7. 

    图 8  浊流在取样点S1、S2处的垂向速度剖面

    Figure 8. 

    图 9  200 g/L的浊流在主流情景时的模拟结果

    Figure 9. 

    图 10  浊流运动中的头部流场(x方向)图

    Figure 10. 

    表 1  试验浊流初始含沙量配置表

    Table 1.  Configuration in initial sand content in the turbidity current experiment

    序号试验情景浊流含沙量/(g/L)
    主流支流
    1主流1000
    2汇流100100
    3主流2000
    4汇流200200
    5主流3000
    6汇流300300
    7主流4000
    8汇流400400
    9主流5000
    10汇流500500
    下载: 导出CSV

    表 2  含沙量样品编号与取样盒层位对应关系

    Table 2.  Correspondence between sand content sample serial number and sampling box layer

    取样盒分
    层名称
    距底高度
    范围/cm
    S1处各层
    样品编号
    S2处各层
    样品编号
    上层8~12S1-3S2-3
    中层4~8S1-2S2-2
    底层0~4S1-1S2-1
    下载: 导出CSV

    表 3  初始含沙量为200 g/L的浊流模拟流速最大值与试验流速最大值对比

    Table 3.  Comparison between the maximum simulated currents velocity and the maximum experimental flow velocity for turbidity flow with initial sand content of 200 g/L

    项目 主流情景
    vA
    主流情景
    vB
    汇流情景
    vA
    汇流情景
    vB
    试验值/(m/s) 0.275 0.304 0.306 0.356
    模拟值/(m/s) 0.270 0.291 0.305 0.351
    绝对误差/(m/s) 0.005 0.013 0.001 0.006
    相对误差/% 1.91 4.42 0.42 1.63
    注:相对误差的计算方法为相对误差=$ \dfrac{|{\text{模拟值}}-{\text{试验值}}|}{\text{试验值}}$
    下载: 导出CSV
  • [1]

    徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    XU Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10):98-105.]

    [2]

    Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi: 10.1016/j.jpgl.2019.116023

    [3]

    许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6 ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24

    XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6 ka at the Yingqiong continental slope in the Northwest of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5):15-24.]

    [4]

    Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8):675-678. doi: 10.1130/G45178.1

    [5]

    郑旭峰, 李安春, 万世明, 等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究, 2014, 34(3):579-589 doi: 10.3969/j.issn.1001-7410.2014.03.12

    ZHENG Xufeng, LI Anchun, WAN Shiming, et al. The turbidity events in Okinawa trough during middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3):579-589.] doi: 10.3969/j.issn.1001-7410.2014.03.12

    [6]

    Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8:275-310. doi: 10.1146/annurev.fl.08.010176.001423

    [7]

    徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5):552-558.]

    [8]

    Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2):58-67. doi: 10.5670/oceanog.2014.40

    [9]

    Wang X X, Cai F, Sun Z L, et al. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha Slope, South China Sea[J]. Geomorphology, 2022, 410:108285. doi: 10.1016/j.geomorph.2022.108285

    [10]

    李梦君, 毕乃双, 胡丽沙, 等. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4):23-33

    LI Mengjun, BI Naishang, HU Lisha, et al. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4):23-33.]

    [11]

    王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3):1-15

    WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3):1-15.]

    [12]

    Yu H S, Chiang C S, Shen S M. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. doi: 10.1016/j.jmarsys.2007.07.010

    [13]

    Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, Northeast South China Sea[J]. Marine Geology, 2020, 424:106158. doi: 10.1016/j.margeo.2020.106158

    [14]

    Talling P J, Baker M L, Pope E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1):4193. doi: 10.1038/s41467-022-31689-3

    [15]

    Forel F A. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Académie des Sciences Paris, 1885, 101:725-728.

    [16]

    Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2):327-351.

    [17]

    Felix M, Sturton S, Peakall J. Combined measurements of velocity and concentration in experimental turbidity currents[J]. Sedimentary Geology, 2005, 179(1-2):31-47. doi: 10.1016/j.sedgeo.2005.04.008

    [18]

    Nogueira H I S, Adduce C, Alves E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4):417-431. doi: 10.1080/00221686.2013.798363

    [19]

    Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2):620-637. doi: 10.1111/sed.12397

    [20]

    Bowen A J, Normark W R, Piper D J W. Modelling of turbidity currents on Navy submarine fan, California continental borderland[M]//Stow D A V. Deep‐Water Turbidite Systems. International Association of Sedimentologists, 1991: 7-23.

    [21]

    Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self‐maintenance[J]. Journal of Geophysical Research:Oceans, 1988, 93(C4):3543-3553. doi: 10.1029/JC093iC04p03543

    [22]

    Abd El-Gawad S M, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J]. Marine Geology, 2012, 326-328:55-66. doi: 10.1016/j.margeo.2012.06.003

    [23]

    Salles T, Mulder T, Gaudin M, et al. Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model[J]. Geomorphology, 2008, 97(3-4):516-537. doi: 10.1016/j.geomorph.2007.09.005

    [24]

    Basani R, Janocko M, Cartigny M J B, et al. MassFLOW‐3DTM as a simulation tool for turbidity currents: some preliminary results[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014: 587-608.

    [25]

    Sun Y N, Li J, Cao Z X, et al. Effect of tributary inflow on reservoir turbidity current[J]. Environmental Fluid Mechanics, 2023, 23(2):259-290. doi: 10.1007/s10652-022-09856-3

    [26]

    Heimsund S. Numerical simulation of turbidity currents: a new perspective for small-and large-scale sedimentological experiments[D]. Master Dissertation of the University of Bergen, 2007.

    [27]

    Heimsund S, Xu J P, Nemec W. Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California[C]//AGU Fall Meeting Abstracts. 2007.

    [28]

    栾坤祥. 南海北部海底峡谷识别方法构建与峡谷特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017

    LUAN Kunxiang. The construction identification method of submarine canyon and characteristics analysis of northern South China sea[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2017.]

    [29]

    张春生, 刘忠保, 施冬, 等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报, 2002, 20(1):25-29

    ZHANG Chunsheng, LIU Zhongbao, SHI Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1):25-29.]

  • 加载中

(10)

(3)

计量
  • 文章访问数:  312
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2023-03-23
修回日期:  2023-11-27
刊出日期:  2024-08-28

目录