长江口-东海陆架黏土中高活性铁的富集效应及环境控制机制

徐飘飘, 苏妮, 连尔刚, 王锐, 杨守业. 长江口-东海陆架黏土中高活性铁的富集效应及环境控制机制[J]. 海洋地质与第四纪地质, 2024, 44(4): 54-64. doi: 10.16562/j.cnki.0256-1492.2024030301
引用本文: 徐飘飘, 苏妮, 连尔刚, 王锐, 杨守业. 长江口-东海陆架黏土中高活性铁的富集效应及环境控制机制[J]. 海洋地质与第四纪地质, 2024, 44(4): 54-64. doi: 10.16562/j.cnki.0256-1492.2024030301
XU Piaopiao, SU Ni, LIAN Ergang, WANG Rui, YANG Shouye. Enrichment effect and environmental control of clay reactive iron in the Changjiang River estuary and East China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 54-64. doi: 10.16562/j.cnki.0256-1492.2024030301
Citation: XU Piaopiao, SU Ni, LIAN Ergang, WANG Rui, YANG Shouye. Enrichment effect and environmental control of clay reactive iron in the Changjiang River estuary and East China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 54-64. doi: 10.16562/j.cnki.0256-1492.2024030301

长江口-东海陆架黏土中高活性铁的富集效应及环境控制机制

  • 基金项目: 国家自然科学基金“台湾流域风化过程中的稳定Sr同位素地球化学行为与地学意义”(42173008),“陆海界面边界交换反应对长江口Sr元素循环的影响”(42376170);上海市自然科学基金“长江口-东海陆架反风化作用的锶稳定同位素示踪研究”(23ZR1466900)
详细信息
    作者简介: 徐飘飘(1998—),女,硕士研究生,研究方向为沉积地球化学,E-mail:ppxu@tongji.edu.cn
    通讯作者: 苏妮(1983—),女,副教授,研究方向为大陆边缘沉积学,E-mail:nsu@tongji.edu.cn
  • 中图分类号: P736

Enrichment effect and environmental control of clay reactive iron in the Changjiang River estuary and East China Sea

More Information
  • 铁元素的化学相态分析是深入理解沉积物的来源、环境演化以及铁参与的生物地球化学循环的关键手段,但不同粒级沉积物中铁化学相态研究薄弱,制约了表生铁循环的研究认知。本文选择长江口-东海陆架表层沉积物,通过六步提取法分析沉积物全样及其黏土组分中总铁(FeT)、高活性铁(FeHR)、弱活性铁(FePR)和不活性铁(FeU)的含量,含量均遵循FeHR>FePR>FeU。全样中FeT和FeHR的含量与平均粒径、黏土、有机碳和铝含量密切相关,表明富含有机质的黏土矿物易于富集高活性铁;相较于全样,黏土组分中FeHR/FeT比值升高10%,而FePR/FeT比值则降低10%,反映黏土组分对高活性铁的富集效应。河口动力环境基本控制沉积物中Fe的相态分布,长江口最大浑浊带沉积物全样中FeT和FeHR含量较高,且受粒度的影响显著;黏土组分可以显著消除粒度效应的影响,FeT和FeHR被大量截留在最大浑浊带前缘的河口低盐度区域;而在中高盐度的口外区域,Fe的来源相对稳定,主要为富FeHR的长江源和贫FeHR的陆架源沉积物混合。本研究揭示黏土组分在流域-河口-陆架的迁移可能主导了高活性Fe在陆海界面的分布和循环过程,这对深入理解入海颗粒态Fe的源汇过程、地球化学循环及其环境效应有重要参考价值。

  • 加载中
  • 图 1  长江口-东海陆架表层沉积物采样站位图(C断面)

    Figure 1. 

    图 2  颗粒态Fe化学相态的六步提取法实验流程和可能的目标矿物相[6]

    Figure 2. 

    图 3  底层水体物理化学性质(a、b)、表层沉积物的粒径组成和平均粒径(c)以及烧失量(LOI)和总有机碳(TOC)含量(d)的空间变化

    Figure 3. 

    图 4  沉积物全样(a)及黏土组分中(b)FeT含量以及FeHR、FePR和FeU贡献比例

    Figure 4. 

    图 5  沉积物全样总Fe(FeT)和高活性Fe(FeHR)含量与平均粒径、黏土含量、TOC以及Al含量之间的相关关系

    Figure 5. 

    图 6  沉积物全样和黏土组分中FeHR(a)和FePR(b)与Al含量的相关关系,以及FeHR/FeT(c)和FePR/FeT(d)与FeT含量的相关关系

    Figure 6. 

    图 7  长江口-东海陆架表层沉积物FeT(a)和FeHR(b)与Al含量的相关关系

    Figure 7. 

    图 8  沉积物全样和黏土组分中FeT(a)、FeHR(b)、FeHR/FeT(c)和FeT/Al(d)沿C断面变化特征

    Figure 8. 

    表 1  长江口-东海陆架表层沉积物全样及黏土组分Fe相态分析结果

    Table 1.  Fe speciation analyses results of bulk sample and clay fraction of surface sediments in the Changjiang River estuary and East China Sea

    样品名称 位置 水深
    /m
    全样 黏土
    东经 北纬 FeHR
    /%
    FePR
    /%
    FeU
    /%
    FeT
    /%
    Al
    /%
    FeHR/FeT FeT/Al FeHR
    /%
    FePR
    /%
    FeU
    /%
    FeT
    /%
    Al
    /%
    FeHR/FeT FeT/Al
    C1 121.10° 31.77° 12.5 2.03 1.03 2.09 5.15 5.01 0.39 1.03 5.07 1.01 1.45 7.54 12.8 0.67 0.59
    C2 121.31° 31.61° 18.5 1.34 0.80 0.49 2.64 5.91 0.51 0.45 4.62 1.48 0.84 6.94 13.2 0.67 0.53
    C3 121.57° 31.40° 8.0 1.10 0.67 0.42 2.20 5.30 0.50 0.41 5.09 1.73 0.86 7.69 12.3 0.66 0.63
    C5 121.75° 31.29° 16.8 1.88 1.97 0.62 4.47 9.50 0.42 0.47 3.25 2.00 0.82 6.07 12.6 0.53 0.48
    C6 121.95° 31.12° 8.5 2.07 1.43 0.66 4.16 8.68 0.50 0.48 3.55 1.90 0.84 6.29 12.9 0.56 0.49
    C6-1 122.04° 31.07° 6.0 2.08 1.37 0.79 4.25 8.68 0.49 0.49 3.64 1.75 0.73 6.11 12.7 0.59 0.48
    C7 122.16° 31.03° 8.7 2.37 1.38 0.78 4.53 9.68 0.52 0.47 3.40 1.33 1.37 6.11 12.8 0.56 0.48
    C8 122.25° 31.02° 8.5 1.92 1.40 0.59 3.91 8.56 0.49 0.46 3.81 1.74 0.78 6.32 12.7 0.60 0.50
    C9 122.37° 31.00° 10.7 1.88 1.29 0.52 3.69 8.11 0.51 0.46 3.69 1.52 0.95 6.16 12.7 0.60 0.48
    C10 122.45° 30.97° 12.0 1.61 1.25 0.55 3.41 7.62 0.47 0.45 3.44 1.03 1.67 6.14 12.6 0.56 0.49
    C11 122.62° 30.92° 20.0 1.67 1.41 0.60 3.68 8.09 0.45 0.46 3.36 1.46 1.44 6.26 12.3 0.54 0.51
    C12 122.74° 30.94° 22.2 1.95 1.69 0.45 4.09 9.08 0.48 0.45 3.40 1.76 0.83 5.99 12.3 0.57 0.49
    C13 122.89° 30.80° 32.7 1.79 1.47 0.55 3.81 8.53 0.47 0.45 3.27 1.82 0.75 5.83 12.2 0.56 0.48
    C14 123.26° 30.67° 58.4 1.12 0.88 0.41 2.40 5.84 0.47 0.41 3.06 1.08 1.69 5.83 12.4 0.53 0.47
    C15 123.50° 30.51° 56.6 1.09 0.88 0.45 2.42 5.53 0.45 0.44 3.01 1.12 1.51 5.64 12.3 0.53 0.46
    C16 124.00° 30.29° 50.0 1.02 0.89 0.48 2.40 5.57 0.43 0.43 2.79 1.87 0.68 5.35 12.1 0.52 0.44
    C18 124.49° 30.08° 53.2 1.04 0.86 0.50 2.39 5.79 0.43 0.41 2.93 1.72 0.86 5.51 11.9 0.53 0.46
    本研究平均值 1.64 1.22 0.64 3.51 7.38 0.47 0.48 3.61 1.55 1.06 6.22 12.5 0.58 0.50
    标准偏差 0.44 0.35 0.39 0.92 1.65 0.04 0.14 0.69 0.33 0.36 0.63 0.33 0.05 0.05
    长江悬浮物[22] 2.30 0.93 1.92 5.15 9.83 0.45 0.52
    标准偏差 0.21 0.20 0.09 0.16 0.92 0.03 0.05
    全球河流颗粒物[2-3] 2.09 1.21 1.49 4.81 5.82 0.43 0.61
    标准偏差 0.08 0.05 0.06 0.19 2.79 0.03 0.17
    东海陆架沉积物[12-14] 0.99 1.37 0.86 3.23 0.30 0.61
    标准偏差 0.39 0.29 0.29 0.72 0.07 0.10
    大陆边缘沉积物[1] 1.03 0.84 1.83 3.69 0.28
    标准偏差 0.40 0.26 0.53 0.91 0.06
    注:“–”代表无数据。
    下载: 导出CSV
  • [1]

    Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3):219-245. doi: 10.2475/ajs.298.3.219

    [2]

    Poulton S W, Raiswell R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9):774-805. doi: 10.2475/ajs.302.9.774

    [3]

    Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3-4):203-221. doi: 10.1016/j.chemgeo.2005.01.007

    [4]

    Raiswell R. Iron Transport from the Continents to the Open Ocean: The Aging-Rejuvenation Cycle[J]. Elements, 2011, 7(2):101-106. doi: 10.2113/gselements.7.2.101

    [5]

    Canfield D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53:619-632. doi: 10.1016/0016-7037(89)90005-7

    [6]

    Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214:209-221.

    [7]

    Raiswell R. Towards a global highly reactive iron cycle[J]. Journal of Geochemical Exploration, 2006, 88(1-3):436-439. doi: 10.1016/j.gexplo.2005.08.098

    [8]

    李超, 舒劲松, 许斐, 等. 沉积物中铁的化学相态分析进展[J]. 地球科学—中国地质大学学报, 2013, 38(3):454-460

    LI Chao, SHU Jingsong, XU Fei, et al. The analytical development of low-temperature particulate Fe speciation[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(3):454-460.]

    [9]

    Wang D Y, Zhu M X, Sun C H, et al. Geochemistry of iron and sulfur in the Holocene marine sediments under contrasting depositional settings, with caveats for applications of paleoredox proxies[J]. Journal of Marine Systems, 2021, 220:103572. doi: 10.1016/j.jmarsys.2021.103572

    [10]

    胡利民, 季钰涵, 赵彬, 等. 铁对海洋沉积有机碳保存的影响及其碳汇意义[J]. 中国科学: 地球科学, 2023, 53(9): 1967-1981

    HU Limin, JI Yuhan, ZHAO Bin, et al. The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration[J]. SCIENCE CHINA: Earth Sciences, 2023, 66(9): 1946-1959.]

    [11]

    Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses[M]. John Wiley & Sons, 2003.

    [12]

    Zhu M X, Hao X C, Shi X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27:892-905. doi: 10.1016/j.apgeochem.2012.01.004

    [13]

    Li C, Yang S, Lian E, et al. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: Iron cycle and paleoenvironmental implications[J]. Quaternary International, 2017, 452:116-128. doi: 10.1016/j.quaint.2016.07.014

    [14]

    Wei G Y, Chen T Y, Poulton S W, et al. A chemical weathering control on the delivery of particulate iron to the continental shelf[J]. Geochimica et Cosmochimica Acta, 2021, 308:204-216. doi: 10.1016/j.gca.2021.05.058

    [15]

    恽才兴. 长江河口近期演变基本规律[M]. 北京: 海洋出版社, 2004, 8-14

    YUN Caixing. Recent developments of the Changjiang Estuary[M]. Beijing: Ocean Press, 2004, 8-14.]

    [16]

    郭磊城, 朱春燕, 何青, 等. 长江河口潮波时空特征再分析[J]. 海洋通报, 2017, 36(6):652-661

    GUO Leicheng, ZHU Chunyan, HE Qing, et al. Examination of tidal wave properties in the Yangtze River estuary[J]. Marine Science Bulletin, 2017, 36(6):652-661.]

    [17]

    苏纪兰, 袁立业. 中国近海水文[M]. 北京: 海洋出版社, 2005

    SU Jilan, YUAN Liye. Hydrology of China Offshore Area[M]. Beijing: Ocean Press, 2005.]

    [18]

    Liang Y H, Wang R, Sheng G D, et al. Geochemical controls on the distribution and bioavailability of heavy metals in sediments from Yangtze River to the East China Sea: Assessed by sequential extraction versus diffusive gradients in thin-films (DGT) technique[J]. Journal of Hazardous Materials, 2023, 452:131253. doi: 10.1016/j.jhazmat.2023.131253

    [19]

    Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994a, 58:1271-1284.

    [20]

    Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994b, 114:347-363.

    [21]

    刘梦佳, 黄湘通, 连尔刚, 等. 长江口-东海内陆架悬浮重矿物组成与颗粒特征[J]. 古地理学报, 2024, 26(2):1-16

    LIU Mengjia, HUANG Xiangtong, LIAN Ergang, et al. Composition and particle characteristics of heavy minerals in suspended solids from the Yangtze River estuary and East China Sea inner continental shelf[J]. Journal of Palaeogeography, 2024, 26(2):1-16.]

    [22]

    Mao C P, Chen J, Yuan X Y, et al. Seasonal variation in the mineralogy of the suspended particulate matter of the lower Changjiang River at Nanjing, China[J]. Clays and Clay Minerals, 2010, 58(5):691-706. doi: 10.1346/CCMN.2010.0580508

    [23]

    赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11):1151-1158

    ZHAO Bin, YAO Peng, YU Zhigang. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J]. Advances in Earth Science, 2016, 31(11):1151-1158.]

    [24]

    杨守业, 贾琦, 许心宁, 等. 海底反风化作用与关键元素循环[J]. 海洋地质与第四纪地质, 2023, 43(3):26-34

    YANG Shouye, JIA Qi, XU Xinning, et al. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3):26-34.]

    [25]

    Boyle E, Edmond J, Sholkovitz E. The mechanism of iron removal in estuaries[J]. Geochimica et Cosmochimica Acta, 1977, 41:1313-1324.

    [26]

    Moore R M, Burton J D, Williams P J LeB, et al. The behaviour of dissolved organic material, iron and manganese in estuarine mixing[J]. Geochimica et Cosmochimica Acta, 1979, 43(6):919-926. doi: 10.1016/0016-7037(79)90229-1

    [27]

    Mayer L M. Aggregation of colloidal iron during estuarine mixing: kinetics, mechanism, and seasonality[J]. Geochimica et Cosmochimica Acta, 1982, 46:2527-2535. doi: 10.1016/0016-7037(82)90375-1

    [28]

    Figueres G, Martin J M, Meybeck M. Iron behaviour in the Zaire estuary[J]. Netherlands Journal of Sea Research, 1978, 12:329-337. doi: 10.1016/0077-7579(78)90035-2

    [29]

    Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006

    [30]

    Canfield D E, Lyons T W, Raiswell R. A model for iron deposition to euxinic Black Sea sediments[J]. American Journal of Science, 1996, 296:818-834. doi: 10.2475/ajs.296.7.818

    [31]

    Poulton S W, Canfield D E. Ferruginous conditions: a dominant feature of the ocean through Earth's history[J]. Elements, 2011, 7:107-112. doi: 10.2113/gselements.7.2.107

    [32]

    Clarkson M O, Poulton S W, Guilbaud R, et al. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments[J]. Chemical Geology, 2014, 382:111-122. doi: 10.1016/j.chemgeo.2014.05.031

    [33]

    Cole D B, Zhang S, Planavsky N J. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments[J]. Geochimica et Cosmochimica Acta, 2017, 215:337-353. doi: 10.1016/j.gca.2017.08.004

  • 加载中

(8)

(1)

计量
  • 文章访问数:  527
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2024-03-03
修回日期:  2024-04-03
录用日期:  2024-04-03
刊出日期:  2024-08-28

目录