北部湾大风江河口沙嘴动态变化过程

陈益, 戴志军, 庞文鸿, 梁喜幸, 罗杰骏, 熊媛. 北部湾大风江河口沙嘴动态变化过程[J]. 海洋地质与第四纪地质, 2025, 45(2): 43-54. doi: 10.16562/j.cnki.0256-1492.2023102101
引用本文: 陈益, 戴志军, 庞文鸿, 梁喜幸, 罗杰骏, 熊媛. 北部湾大风江河口沙嘴动态变化过程[J]. 海洋地质与第四纪地质, 2025, 45(2): 43-54. doi: 10.16562/j.cnki.0256-1492.2023102101
CHEN Yi, DAI Zhijun, PANG Wenhong, LIANG Xixing, LUO Jiejun, XIONG Yuan. Dynamic variation of sand spit in the Dafeng River estuary, Beibu Gulf[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 43-54. doi: 10.16562/j.cnki.0256-1492.2023102101
Citation: CHEN Yi, DAI Zhijun, PANG Wenhong, LIANG Xixing, LUO Jiejun, XIONG Yuan. Dynamic variation of sand spit in the Dafeng River estuary, Beibu Gulf[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 43-54. doi: 10.16562/j.cnki.0256-1492.2023102101

北部湾大风江河口沙嘴动态变化过程

  • 基金项目: 国家自然科学重点基金“北部湾红树林潮滩响应陆海水沙变化的沉积动力过程”(41930537)
详细信息
    作者简介: 陈益(1986—),男,博士研究生,主要从事河口海岸动力沉积地貌过程研究,E-mail:52263904009@stu.ecnu.edu.cn
    通讯作者: 戴志军(1973—),男,教授,主要从事河海相互作用及生物动力地貌过程研究,E-mail:zjdai@sklec.ecnu.edu.cn
  • 中图分类号: P736

Dynamic variation of sand spit in the Dafeng River estuary, Beibu Gulf

More Information
  • 沙嘴的快速变化过程直接关联河口地貌变迁,影响陆海交汇带水沙交换,因而沙嘴地貌的移动及驱动机制成为河口研究重点关注的内容之一。然而,受限于监测资料获取的困难,一直有较少工作涉及中—强潮河口沙嘴动力地貌演变。以北部湾大风江河口沙嘴为研究对象,基于1990—2021年卫星遥感影像、2022年11月实地采集的沙嘴表层沉积物以及区域水文资料,分析中—强潮环境的大风江河口沙嘴演变特征及变化过程。结果表明:①大风江河口沙嘴持续向西北延伸,其中沙嘴宽度与面积呈洪季变大、枯季变小的季相变化特征;②沙嘴沉积物主要来源为洪季的径流来沙,沙嘴海侧顶部沉积物平均粒径最粗,并向陆侧与中部、尾部逐渐变细。沉积物主要由海侧顶部向沙嘴中部及尾部方向输移,使沙嘴持续向西北延伸。③波浪是控制大风江沙嘴长期形态演变的主要因素,中—强潮环境下潮流作用是沉积物向岸输送、沙嘴持续向西北延伸的原因,径流量的洪枯季显著差异是沙嘴宽度与面积洪季变大、枯季变小的主控因素。

  • 加载中
  • 图 1  研究区域与沉积物采样点设置

    Figure 1. 

    图 2  沙嘴范围提取采用的遥感影像集统计

    Figure 2. 

    图 3  沙嘴沉积物样品三角分布

    Figure 3. 

    图 4  沙嘴沉积物组分变化

    Figure 4. 

    图 5  沙嘴平均粒径(Mz)、分选系数(σ1)、偏态(SK1)、峰态(KG)

    Figure 5. 

    图 6  1990—2020年期间沙嘴形态变化

    Figure 6. 

    图 7  1990—2020年期间沙嘴面积、长度、宽度变化与质心移动

    Figure 7. 

    图 8  2018—2021年洪季、枯季沙嘴形态变化

    Figure 8. 

    图 9  2018—2021年洪季、枯季沙嘴面积与宽度变化统计

    Figure 9. 

    图 10  2018—2021年沙嘴洪季、枯季宽度、面积变化与大风江坡朗坪水文站历史同期平均流量相关关系

    Figure 10. 

    图 11  涠洲岛海洋站历史波浪月统计

    Figure 11. 

    图 12  沙嘴1995至2000年遥感影像图

    Figure 12. 

    表 1  粒径分级标准

    Table 1.  Grain size classification standards

    等级 等级 平均粒径/µm
    砾石细砾石8 000~4 000
    粗砂2 000~500
    中砂500~250
    细砂250~62.5
    粉砂粗粉砂62.5~16
    细粉砂16~3.9
    黏土黏土3.9~0.24
    下载: 导出CSV

    表 2  沙嘴沉积物组分

    Table 2.  Sediment size composition of the sand spit %

    采样点编号 细砂 中砂 粗砂
    海侧 陆侧 海侧 陆侧 海侧 陆侧
    1 1.042 46.76 28.871 32.74 70.056 19.671
    2 12.978 80.948 33.86 13.197 52.584 5.176
    3 38.535 89.8 23.576 4.582 37.44 4.098
    4 50.476 79.26 24.607 9.414 24.627 7.816
    5 38.416 78.855 43.076 11.034 18.268 7.558
    6 46.968 61.298 33.398 15.933 19.245 21.861
    下载: 导出CSV

    表 3  沙嘴平均粒径、分选系数、偏态、峰态

    Table 3.  The particle size parameters of average size, sorting coefficient, skewness, and kurtosis of the sand split

    采样点编号 平均粒径/µm 分选系数 偏态 峰态
    海侧 陆侧 海侧 陆侧 海侧 陆侧 海侧 陆侧
    1 607.9734 280.4785 0.544503 0.923458 0.34374 0.453595 0.780876 1.385656
    2 498.4276 187.6972 0.806415 0.704203 0.472333 0.334179 1.053235 1.170949
    3 360.508 163.092 1.092031 0.741816 0.127668 0.443639 1.401985 1.361979
    4 283.9223 207.8505 0.969367 1.065781 0.321818 0.641114 1.226198 1.793195
    5 306.0457 205.969 0.773283 0.951842 0.220212 0.549042 1.106709 1.629662
    6 289.9574 259.8288 0.858083 1.057971 0.33533 0.41259 1.174146 1.500453
    下载: 导出CSV

    表 4  涠洲岛海洋站洪枯季平均波高与波向统计

    Table 4.  Statistics of average wave height and wave direction in flood and dry season at Ocean Observation Station in Weizhou Island

    洪/枯 季 平均波高/m 主要波向
    洪季 0.775 SSW
    枯季 0.475 NNE
    下载: 导出CSV

    表 5  北海潮位站2021年洪枯季最大潮差与平均潮差统计

    Table 5.  Statistics of the maximum tidal range and average tidal range observed at Tide Gauge Station in Beihai in flood and dry seasons in 2021

    洪/枯 季 最大潮差/m 平均潮差/m
    洪季 5.11 3.18
    枯季 5.12 3.16
    下载: 导出CSV

    表 6  沙嘴1995至2000年影像详细信息及对应潮位

    Table 6.  Specifications of the satellite images and corresponding tide levels of the sand spit from 1995 to 2000

    年份 卫星 影像日期 对应潮位
    1995 Landsat-5 1995-05-25 11:30 150
    1996 Landsat-5 1996-05-27 11:30 90
    1997 Landsat-5 1997-05-14 11:30 122
    1998 Landsat-5 1998-08-21 11:30 236
    1999 Landsat-5 1999-06-02 11:30 183
    2000 Landsat-5 2000-05-06 11:30 253
    下载: 导出CSV
  • [1]

    Leonardi N, Canestrelli A, Sun T, et al. Effect of tides on mouth bar morphology and hydrodynamics[J]. Journal of Geophysical Research: Oceans, 2013, 118(9):4169-4183. doi: 10.1002/jgrc.20302

    [2]

    Dinis P A, Huvi J, Cascalho J, et al. Sand-spits systems from Benguela region (SW Angola). An analysis of sediment sources and dispersal from textural and compositional data[J]. Journal of African Earth Sciences, 2016, 117:171-182. doi: 10.1016/j.jafrearsci.2016.01.020

    [3]

    Saengsupavanich C. Morphological evolution of sand spits in Thailand[J]. Marine Geodesy, 2021, 44(5):432-453. doi: 10.1080/01490419.2021.1893873

    [4]

    Pradhan U, Mishra P, Mohanty P K, et al. Formation, growth and variability of sand spit at Rushikulya River Mouth, South Odisha Coast, India[J]. Procedia Engineering, 2015, 116:963-970. doi: 10.1016/j.proeng.2015.08.387

    [5]

    Bastos L, Bio A, Pinho J L S, et al. Dynamics of the Douro estuary sand spit before and after breakwater construction[J]. Estuarine, Coastal and Shelf Science, 2012, 109:53-69. doi: 10.1016/j.ecss.2012.05.017

    [6]

    刘宝银, 王岩峰, 高俊国. 近期黄河口沙嘴演变遥感信息的拓扑模型研究[J]. 海洋学报, 2000, 22(2):41-47 doi: 10.3321/j.issn:0253-4193.2000.02.006

    LIU Baoyin, WANG Yanfeng, GAO Junguo. Remote sensing information topological pattern research on recent evolution of sand spit of the Huanghe River’s mouth[J]. Acta Oceanologica Sinica, 2000, 22(2):41-47.] doi: 10.3321/j.issn:0253-4193.2000.02.006

    [7]

    郭建强, 茅志昌. 长江口瑞丰沙嘴演变分析[J]. 海洋湖沼通报, 2008(1):17-24 doi: 10.3969/j.issn.1003-6482.2008.01.003

    GUO Jianqiang, MAO Zhichang. Analysis on the revolution of Ruifengshan spit in Yangtze Estuary[J]. Transactions of Oceanology and Limnology, 2008(1):17-24.] doi: 10.3969/j.issn.1003-6482.2008.01.003

    [8]

    Teodoro A C, Pais-Barbosa J, Gonçalves H, et al. Extraction of Cabedelo sand spit area (Douro estuary) from satellite images through image processing techniques[J]. Journal of Coastal Research, 2011(S64):1740-1744.

    [9]

    Hoang V C. Long-term evolution of morphology at Loc an estuary, Vung Tau, Vietnam[J]. Marine Geodesy, 2020, 43(2):163-188. doi: 10.1080/01490419.2019.1606125

    [10]

    Bergsma E W J, Sadio M, Sakho I, et al. Sand-spit evolution and inlet dynamics derived from space-borne optical imagery: is the Senegal-River inlet closing?[J]. Journal of Coastal Research, 2020, 95(sp1):372-376. doi: 10.2112/SI95-072.1

    [11]

    Zhang H G, Li D L, Wang J, et al. Long time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165:67-85. doi: 10.1016/j.isprsjprs.2020.05.006

    [12]

    李鹏, 陈沈良, 刘清兰, 等. 黄河尾闾沙洲及河口形态对水沙变化的响应[J]. 泥沙研究, 2022, 47(2):57-64

    LI Peng, CHEN Shenliang, LIU Qinglan, et al. Responses of the processes in the Yellow River lowermost channel sandbars and estuary to the variation of water and sediment[J]. Journal of Sediment Research, 2022, 47(2):57-64.]

    [13]

    Allard J, Bertin X, Chaumillon E, et al. Sand spit rhythmic development: a potential record of wave climate variations? Arçay Spit, western coast of France[J]. Marine Geology, 2008, 253(3-4):107-131. doi: 10.1016/j.margeo.2008.05.009

    [14]

    Dan S, Walstra D J R, Stive M J F, et al. Processes controlling the development of a river mouth spit[J]. Marine Geology, 2011, 280(1-4):116-129. doi: 10.1016/j.margeo.2010.12.005

    [15]

    Duc Anh N Q, Tanaka H, Tam H S, et al. Comprehensive study of the sand spit evolution at tidal inlets in the central coast of Vietnam[J]. Journal of Marine Science and Engineering, 2020, 8(9):722. doi: 10.3390/jmse8090722

    [16]

    Hoan L X, Hanson H, Larson M, et al. A mathematical model of spit growth and barrier elongation: Application to Fire Island Inlet (USA) and Badreveln Spit (Sweden)[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4):468-477. doi: 10.1016/j.ecss.2011.05.033

    [17]

    Hiep N T, Tanaka H, Tinh N X. Morphology recovery of the Abukuma River mouth after the 2011 Tohoku tsunami under the interaction between sand spit and sand terrace[J]. Coastal Engineering Journal, 2021, 63(4):467-484. doi: 10.1080/21664250.2021.1937902

    [18]

    Chi S H, Zhang C, Wang P, et al. Morphological evolution of paired sand spits at the Fudu river mouth: Wave effects and anthropogenic factors[J]. Marine Geology, 2023, 456:106991. doi: 10.1016/j.margeo.2023.106991

    [19]

    莫永杰. 广西溺谷湾海岸地貌特征[J]. 海洋通报, 1990, 9(6):57-60

    MO Yongjie. Geomorphic features of drowned valley bays of Guangxi coast[J]. Marine Science Bulletin, 1990, 9(6):57-60.]

    [20]

    中国海湾志编纂委员会. 中国海湾志[M]. 北京: 海洋出版社, 1993, 12

    China Gulf Chronicles Compilation Committee. Chinese Gulf Chronicles[M]. Beijing: Ocean Press, 1993, 12.]

    [21]

    王日明, 戴志军, 黄鹄, 等. 北部湾大风江与南流江河口红树林空间分布格局研究[J]. 海洋学报, 2020, 42(12):54-61

    WANG Riming, DAI Zhijun, HUANG Hu, et al. Spatial patterns of the mangrove along the riverine estuaries, Nanliujiang River and Dafengjiang River of the Beibu Gulf[J]. Haiyang Xuebao, 2020, 42(12):54-61.]

    [22]

    黎树式, 戴志军. 南流江现代水文−地貌过程[M]. 北京: 海洋出版社, 2018

    LI Shushi, DAI Zhijun. Modern hydrological-geomorphological processes of the Nanliu River[M]. Beijing: Ocean Press, 2018.]

    [23]

    Long C Q, Dai Z J, Wang R M, et al. Dynamic changes in mangroves of the largest delta in northern Beibu Gulf, China: reasons and causes[J]. Forest Ecology and Management, 2022, 504:119855. doi: 10.1016/j.foreco.2021.119855

    [24]

    Gorelick N, Hancher M, Dixon M, et al. Google earth engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27. doi: 10.1016/j.rse.2017.06.031

    [25]

    高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836

    GAO Shu. Grain size trend analysis: principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5):826-836.]

    [26]

    赵建春, 戴志军, 李九发, 等. 强潮海湾近岸表层沉积物时空分布特征及水动力响应: 以杭州湾北岸为例[J]. 沉积学报, 2008, 26(6):1043-1051

    ZHAO Jianchun, DAI Zjijun, LI Jiufa, et al. Study on the characteristics of temporal and spatial changes in properties of surface sediment on near-shore seabed of strong-tide bay: a case from the north bank of Hangzhou Bay in Shanghai[J]. Acta Sedimentologica Sinica, 2008, 26(6):1043-1051.]

    [27]

    黄子眉, 张春华, 申友利, 等. 涠洲岛海域风侯和波侯特征分析[J]. 海洋预报, 2021, 38(2):62-68

    HUANG Zimei, ZHANG Chunhua, SHEN Youli, et al. Analysis of the climatic characteristics of wind and wave in Weizhou Island sea area[J]. Marine Forecasts, 2021, 38(2):62-68.]

    [28]

    黄鹄, 戴志军, 施伟勇, 等. 强潮环境下的海滩剖面沉积特征: 以春季广西北海银滩为例[J]. 热带海洋学报, 2011, 30(4):71-76 doi: 10.3969/j.issn.1009-5470.2011.04.011

    HUANG Hu, DAI Zhijun, SHI Weiyong, et al. Deposition characteristics of beach profile in strong-tidal environment: a case study of Yintan, Guangxi during spring[J]. Journal of Tropical Oceanography, 2011, 30(4):71-76.] doi: 10.3969/j.issn.1009-5470.2011.04.011

    [29]

    Lane E W. Report of the subcommittee on sediment terminology[J]. Eos, Transactions American Geophysical Union, 1947, 28(6):936-938. doi: 10.1029/TR028i006p00936

    [30]

    李晓敏, 张杰, 马毅, 等. 罗斗沙岛动态变化的遥感监测[J]. 海洋学研究, 2013, 31(2):52-58 doi: 10.3969/j.issn.1001-909X.2013.02.007

    LI Xiaomin, ZHANG Jie, MA Yi, et al. Monitoring the dynamic change of Luodousha Island using remote sensing technology[J]. Journal of Marine Sciences, 2013, 31(2):52-58.] doi: 10.3969/j.issn.1001-909X.2013.02.007

    [31]

    陶旭, 张东. 潮滩滩面高程的高光谱遥感反演研究[J]. 海洋科学进展, 2013, 31(4):498-507 doi: 10.3969/j.issn.1671-6647.2013.04.008

    TAO Xu, ZHANG Dong. Inversion of tidal flat elevation based on Hyperspectral remote sensing[J]. Advances in Marine Science, 2013, 31(4):498-507.] doi: 10.3969/j.issn.1671-6647.2013.04.008

    [32]

    刘吉平, 董春月, 刘家福, 等. 三江平原孤立湿地空间分布及其影响因素[J]. 生态学报, 2016, 36(11):3280-3291

    LIU Jiping, DONG Chunyue, LIU Jiafu, et al. Analysis of isolated wetland spatial distribution and factors influencing it in the Sanjiang Plain, China[J]. Acta Ecologica Sinica, 2016, 36(11):3280-3291.]

    [33]

    何安尤, 周解, 朱瑜, 等. 大风江渔业自然资源调查[C]//广西水产研究所论文集. 南宁: 广西壮族自治区科学技术协会, 2006: 159-167

    HE Anyou, ZHOU Jie, ZHU Yu, et al. Dafeng River fishery natural resources survey[C]. Nanning: Guangxi Association for Science and Technology, 2006: 159-167.]

    [34]

    杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6):13-25

    YANG Yang, CHEN Shenliang, XU Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary[J]. Haiyang Xuebao, 2021, 43(6):13-25.]

    [35]

    庞文鸿. 中强潮海滩沉积动力过程研究: 以北海银滩为例[D]. 华东师范大学博士学位论文, 2021

    PANG Wenhong. Sediment dynamic processes in meso-macro tidal beaches: a case study of Yintan beach in Beihai city[D]. Doctoral Dissertation of East China Normal University, 2021.]

  • 加载中

(12)

(6)

计量
  • 文章访问数:  42
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-10-21
修回日期:  2024-02-19
刊出日期:  2025-04-28

目录