表面活性剂抑制不同油水分离体系内甲烷水合物生成的热力学影响研究

付娟, 卢思, 刘世君, 万丽华, 吴能友, 黄丽, 苏秋成. 表面活性剂抑制不同油水分离体系内甲烷水合物生成的热力学影响研究[J]. 海洋地质与第四纪地质, 2025, 45(3): 181-188. doi: 10.16562/j.cnki.0256-1492.2023120101
引用本文: 付娟, 卢思, 刘世君, 万丽华, 吴能友, 黄丽, 苏秋成. 表面活性剂抑制不同油水分离体系内甲烷水合物生成的热力学影响研究[J]. 海洋地质与第四纪地质, 2025, 45(3): 181-188. doi: 10.16562/j.cnki.0256-1492.2023120101
FU Juan, LU Si, Liu Shijun, Wan Lihua, WU Nengyou, HUANG Li, SU Qiucheng. Thermodynamic effect of surfactants on the inhibition of methane hydrate formation in different oil-water system[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 181-188. doi: 10.16562/j.cnki.0256-1492.2023120101
Citation: FU Juan, LU Si, Liu Shijun, Wan Lihua, WU Nengyou, HUANG Li, SU Qiucheng. Thermodynamic effect of surfactants on the inhibition of methane hydrate formation in different oil-water system[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 181-188. doi: 10.16562/j.cnki.0256-1492.2023120101

表面活性剂抑制不同油水分离体系内甲烷水合物生成的热力学影响研究

  • 基金项目: 中国科学院技术支撑人才项目(E2298501);山东省自然科学基金(ZR2022MD008)
详细信息
    作者简介: 付娟(1982—),女,博士,高级实验师,主要从事水合物相关实验测试工作, E-mail:fujuan@ms.giec.ac.cn
    通讯作者: 黄丽(1989—),女,博士,副研究员,主要从事水合物产能地质评价研究工作, E-mail:lihuangocean@163.com 苏秋成(1971—),男,博士,正高级工程师,主要从事仪器平台建设和测试工作,E-mail:suqc@ms.giec.ac.cn
  • 中图分类号: P744

Thermodynamic effect of surfactants on the inhibition of methane hydrate formation in different oil-water system

More Information
  • 在天然气水合物开采过程中,水合物分解产生的甲烷以及储层内原位游离气,在合适的低温和高压条件下易重新形成水合物,导致泥水分界线附近高压井筒或管道的堵塞,从而带来安全隐患。为了避免这种情况的发生,使用表面活性剂作为水合物抑制剂,以有效防止水合物的再生成。本文利用高压微量热仪研究了低剂量阳离子表面活性剂十二烷基二甲基苄基氯化铵(DDBAC)对不同油水分离体系中甲烷水合物生成与分解过程的影响。研究选用了四丁基甲基乙醚(TBME)-H2O、甲基环己烷(MCH)-H2O、环戊烷(CP)-H2O体系及对比实验纯水。实验结果表明,低剂量表面活性剂对纯水中甲烷水合物的生成量影响较小,但对水合物结构有一定影响,更倾向于只生成I型甲烷水合物。然而,在TBME-H2O、MCH-H2O、CP-H2O油水分离体系内,低剂量表面活性剂对甲烷水合物及甲烷混合水合物的生成与分解过程具有显著的抑制作用。表面活性剂减小了甲烷在油相中的溶解度,大幅度降低了水合物的生成量,使得TBME、MCH体系易生成纯甲烷水合物,CP体系生成结构更为复杂的混合型水合物。此外,表面活性剂的抗团聚性使得大分子不容易进入笼型,从而不容易形成H型水合物。研究结果对理解低剂量阳离子表面活性剂在油水分离体系中的不同作用机制具有重要意义。

  • 加载中
  • 图 1  实验装置示意图

    Figure 1. 

    图 2  DDBAC-CH4-H2O体系水合物生成和分解典型热流曲线

    Figure 2. 

    图 3  DDBAC-TBME-CH4-H2O体系水合物生成分解典型热流曲线

    Figure 3. 

    图 4  DDBAC-MCH-CH4-H2O体系水合物生成分解典型热流曲线

    Figure 4. 

    图 5  DDBAC-CP-CH4-H2O体系水合物生成分解典型热流曲线

    Figure 5. 

    表 1  水合物样品反应条件

    Table 1.  Experimental preparation conditions of hydrate samples

    体系 温度/℃ 压力/MPa
    H2O+DDBAC −10 8
    CP5.6mol%- H2O+DDBAC −10 8
    MCH5.6mol%- H2O+DDBAC −10 8
    TBME5.6mol%- H2O+DDBAC −10 8
    下载: 导出CSV

    表 2  不同体系甲烷水合物生成和分解峰的分解温度和分解热

    Table 2.  The temperature and heat of different methane hydrate formation and decomposition peaks

    体系 P/MPa 生成峰 1 生成峰 2 分解峰 1 分解峰 2
    T/℃ H/(J/g) T/℃ H/(J/g) T/℃ H/(J/g) T/℃ H/(J/g)
    CH4* 8 −7.31 −7.42 10.09 −1.72 10.81 17.20 12.08 2.09
    CH4+DDBAC 8 −7.67 −7.46 10.25 −0.65 10.92 18.92 11.18 1.79
    CH4-CP* 8 −5.59 −3.98 7.89 −301.56 30.02 312.80
    CH4-CP+DDBAC 8 −5.16 −113.96 19.43 −0.85 25.04 38.36 29.50 115.30
    CH4-MCH* 10 0.54 −21.99 12.32 −276.93 14.57 12.21 17.58 355.56
    CH4-MCH+
    DDBAC
    8 −6.46 34.69 10.19 −1.11 10.97 18.86 14.71 49.20
    CH4-TBME* 8 −7.54 −16.04 2.27 −184.69 13.41 297.69
    CH4-TBME+
    DDBAC
    8 3.58 −32.19 9.24 −70.28 10.71 156.18 13.57 8.91
    注:*来自文献[13]。
    下载: 导出CSV
  • [1]

    Sloan E D, Koh A C. Clathrate hydrates of natural gases (Third Edition) [M]. Chemical industries, 2008.

    [2]

    Wu N Y, Li Y, Chen Q, Liu C, Jin Y, Tan M, Dong L, Hu G. Sand production management during marine natural gas hydrate exploitation: review and an innovative solution[J]. Energy & Fuels, 2021, 35(6):4617-4632.

    [3]

    Zhao X, Fang Q, Qiu Z, Mi S, Wang Z, Geng Q, Zhang Y. Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates[J]. Energy, 2022, 242(1):122973.

    [4]

    Tao S, Li X, Wang X, Wei Y, Jia Y, Ju J, Cheng Y, Wang H, Gong S, Yao X. Facile Synthesis of Hierarchical Nanosized Single-Crystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors[J]. Angewandte Chemie International Edition, 2020, 59(9):3455. doi: 10.1002/anie.201915144

    [5]

    Kalogerakis N, Jamaluddin A, Dholabhai P, Bishnoi P. Effect of surfactants on hydrate formation kinetics[C]//The proceedings of the SPE International Symposium on Oilfield Chemistry. New Orleans, 1993: SPE-25188-MS.

    [6]

    Erfani A, Varaminian F, Muhammadi M. Gas hydrate formation inhibition using low dosage hydrate inhibitors[C]// The Proceedings of 2nd National Iranian conference on gas hydrate (NICGH). Semnan, 2013.

    [7]

    Nagappayya S K, Lucente-Schultz R M, Nace V M, Ho V M. Antiagglomerant hydrate inhibitors: The link between hydrate-philic surfactant behavior and inhibition performance[J]. Journal of Chemical & Engineering Data, 2015, 60(2):351-355.

    [8]

    Shi L, He Y, Lu J, Liang D. Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems[J]. Energy, 2020, 212:118746. doi: 10.1016/j.energy.2020.118746

    [9]

    Wu N Y, Liu C L, Hao X L. Experimental simulations and methods for natural gas hydrate analysis in China[J]. J China Geology, 2018, 1(1):61-71. doi: 10.31035/cg2018008

    [10]

    Alavi S, Ripmeester J A. Clathrate Hydrates: Molecular Science and Characterization[M]. John Wiley & Sons, 2022.

    [11]

    Dalmazzone D, Hamed N, Dalmazzone C, Rousseau L. Application of high pressure DSC to the kinetics of formation of methane hydrate inwater-in-oil emulsion[J]. Journal of thermal analysis and calorimetry, 2006, 85(2):361-368. doi: 10.1007/s10973-006-7518-1

    [12]

    Ma S, Zheng J N, Lv X, Li Q, Yang M, Song Y C. DSC measurement on formation and dissociation process of methane hydrate in shallow sediments from South China Sea[J]. Energy Procedia, 2019, 158:5421-5426. doi: 10.1016/j.egypro.2019.01.607

    [13]

    Xu C G, Yan R, Fu J, Zhang S H, Yan K F, Chen Z Y, Xia Z M, Li X S. Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization[J]. Applied Energy, 2019, 239:57-69. doi: 10.1016/j.apenergy.2019.01.087

    [14]

    Fu J, Mo J M, Liu S J, Yi W Z, Yu Y S, Wu N Y, Chen X L, Su Q C, Li X S. Thermodynamic characteristics of methane hydrate formation in high-pressure microcalorimeter under different reaction kinetics[J]. Fuel, 2023, 332(1):126072.

    [15]

    Schicks J M, Ripmeester J A. The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: Kinetic versus thermodynamic products[J]. Angewandte Chemie International Edition, 2004, 43(25):3310-3313. doi: 10.1002/anie.200453898

    [16]

    ] Dalmazzone C, Herzhaft B, Rousseau L, Le Parlouer P, Dalmazzone D. Prediction of gas hydrates formation with DSC technique. SPE Annual Technical Conference and Exhibition. 2003.

    [17]

    ] Hu S, Vo L, Monteiro D, Bodnar S, Prince P, Koh CA. Structural effects of gas hydrate antiagglomerant molecules on interfacial interparticle force interactions. Langmuir. 2021;37(5): 1651-1661.

    [18]

    Susilo R, Ripmeester J A, Englezos P. Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy[J]. Chemical Engineering Science, 2007, 62(15):3930-3939. doi: 10.1016/j.ces.2007.03.045

    [19]

    Erfani A, Varaminian F. Experimental investigation on structure H hydrates formation kinetics: Effects of surfactants on interfacial tension. Journal of Molecular Liquids. 2017;225: 636-644.

    [20]

    陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 化学工业出版社, 2020

    CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 化学工业出版社, 2020.

    [21]

    Lee JD, Susilo R, Englezos P. Kinetics of structure H gas hydrate. J Energy & fuels. 2005;19(3): 1008-1015.

    [22]

    Mohammadi A H, Richon D. Equilibrium Data of Methyl Cyclohexane + Hydrogen Sulfide and Methyl Cyclohexane + Methane Clathrate Hydrates[J]. Journal of Chemical Engineering Data, 2010, 55(1):566-569. doi: 10.1021/je900368z

    [23]

    Nakamura T, Makino T, Sugahara T, Ohgaki K. Stability boundaries of gas hydrates helped by methane—structure-H hydrates of methylcyclohexane and cis -1, 2-dimethylcyclohexane[J]. Chemical Engineering Science, 2003, 58:269-273. doi: 10.1016/S0009-2509(02)00518-3

    [24]

    Zhang J, Li Y, Yin Z, Zheng XY, Linga P. How THF Tunes the Kinetics of H2–THF Hydrates? A Kinetic Study with Morphology and Calorimetric Analysis[J]. Industrial & Engineering Chemistry Research. 2023.

    [25]

    Yu Y-S, Li X-S. Metastable structure II methane hydrate: A bridge to obtain high methane uptake in the presence of thermodynamic promoter[J]. Chemical Engineering Journal. 2023;477: 147127.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  34
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2023-12-01
修回日期:  2023-12-25
刊出日期:  2025-06-28

目录