RPO-14C技术及其在有机地球化学研究上的应用

马海悦, 包锐. RPO-14C技术及其在有机地球化学研究上的应用[J]. 海洋地质与第四纪地质, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802
引用本文: 马海悦, 包锐. RPO-14C技术及其在有机地球化学研究上的应用[J]. 海洋地质与第四纪地质, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802
MA Haiyue, BAO Rui. Research topics about RPO-14C and application in organic geochemistry[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802
Citation: MA Haiyue, BAO Rui. Research topics about RPO-14C and application in organic geochemistry[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802

RPO-14C技术及其在有机地球化学研究上的应用

  • 基金项目: 国家自然科学基金项目“基于单体分子化合物碳-14技术的边缘海有机碳转化、迁移与埋藏过程研究”(42076037);中央高校基本科研业务费专项资金(2020042010)
详细信息
    作者简介: 马海悦(1999—),女,硕士研究生,主要从事边缘海有机碳埋藏研究,E-mail:mahaiyue@stu.ouc.edu.cn
    通讯作者: 包锐(1982—),男,博士,教授,主要从事海洋碳-14有机地球化学、海洋碳循环研究,E-mail:baorui@ouc.edu.cn
  • 中图分类号: P736

Research topics about RPO-14C and application in organic geochemistry

More Information
  • 基于沉积物样品的热稳定性进行分析和表征是稳定有机碳性质研究的常用方法,反映和重建了有机碳在环境中的演化和循环过程。热裂解/氧化(Ramped Pyrolysis/Oxidation,RPO)-14C分析技术及其应用是目前有机地球化学研究的前沿领域,也是研究沉积物有机碳埋藏与保存过程的有效方法。本文初步介绍了RPO-14C分析的测试方法和基本原理,阐述了热裂解/氧化及14C分析的装置细节,指出了包括装置改造、温度控制等在内的技术改进及与不同方法的联用拓展。RPO-14C分析技术在有机地球化学领域的沉积物研究方面得到了较广泛的应用:① 揭示有机碳迁移、改造和保存机制;② 改进沉积物年代学;③ 示踪沉积物记录的环境污染。RPO-14C能够对不同热稳定性有机碳进行高效分离,因此沉积物有机碳在自然环境中产生、迁移、改造、埋藏的过程能够借助热解特征得以重建,进而反演和评估全球范围内的有机碳循环机制和碳汇格局。最后,总结了该技术在海洋有机碳表征方面的应用前景及未来发展方向,对未来在更广泛的研究区域开展相关研究具有启示意义。

  • 加载中
  • 图 1  热裂解/氧化及气体收集系统装置

    Figure 1. 

    图 2  RPO谱图结果及对应碳同位素组成 [33]

    Figure 2. 

    图 3  不同特征有机碳RPO谱图及双峰相对高度示意

    Figure 3. 

    图 4  全岩沉积物样品及不同粒度组分的14C年龄热解谱图 [59]

    Figure 4. 

    图 5  RPO谱图及根据阿伦尼乌斯公式衍生的活化能概率密度分布

    Figure 5. 

  • [1]

    包锐. “碳中和”目标背景下我国海洋碳汇与碳年龄的思考[J]. 中国海洋大学学报:自然科学版, 2023, 53(4):1-7

    BAO Rui. Evaluating the carbon sink in Chinese marginal seas in the context of carbon neutrality goals: Insight from carbon ages[J]. Periodical of Ocean University of China, 2023, 53(4):1-7.]

    [2]

    Gillett N P, Kirchmeier-Young M, Ribes A, et al. Constraining human contributions to observed warming since the pre-industrial period[J]. Nature Climate Change, 2021, 11(3):207-212. doi: 10.1038/s41558-020-00965-9

    [3]

    Johnson K S, Bif M B. Constraint on net primary productivity of the global ocean by Argo oxygen measurements[J]. Nature Geoscience, 2021, 14(10):769-774. doi: 10.1038/s41561-021-00807-z

    [4]

    焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学: 地球科学, 2018, 48(11): 1393-1421

    JIAO Nianzhi, LIANG Yantao, ZHANG Yongyu, et al. Carbon pools and fluxes in the China seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1535-1563.]

    [5]

    Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: a controversy stimulates new insights[J]. Oceanography, 2009, 22(4):202-211. doi: 10.5670/oceanog.2009.109

    [6]

    Cai W J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3:123-145. doi: 10.1146/annurev-marine-120709-142723

    [7]

    Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8):593-599. doi: 10.1038/nrmicro2386

    [8]

    Hansell D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5:421-445. doi: 10.1146/annurev-marine-120710-100757

    [9]

    赵美训, 于蒙, 张海龙, 等. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用[J]. 海洋学报, 2014, 36(4):1-10

    ZHAO Meixun, YU Meng, ZHANG Hailong, et al. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Acta Oceanologica Sinica, 2014, 36(4):1-10.]

    [10]

    Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10):791-794. doi: 10.1130/G37948.1

    [11]

    Stoner S W, Schrumpf M, Hoyt A, et al. How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter[J]. Biogeosciences, 2023, 20(15):3151-3163. doi: 10.5194/bg-20-3151-2023

    [12]

    Masiello C A, Druffel E R M, Currie L A. Radiocarbon measurements of black carbon in aerosols and ocean sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(6):1025-1036. doi: 10.1016/S0016-7037(01)00831-6

    [13]

    张延, 高燕, 张旸, 等. Rock-Eval热分解法及其在土壤有机碳研究中的应用[J]. 土壤与作物, 2022, 11(3):282-289

    ZHANG Yan, GAO Yan, ZHANG Yang, et al. Rock-Eval thermal analysis method for soil organic carbon measurement-a review[J]. Soils and Crops, 2022, 11(3):282-289.]

    [14]

    Rosenheim B E, Day M B, Domack E, et al. Antarctic sediment chronology by programmed-temperature pyrolysis: methodology and data treatment[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4):Q04005.

    [15]

    Ghazi L. Characterizing organic carbon with ramped pyrolysis oxidation[J]. Nature Reviews Earth & Environment, 2022, 3(3):162.

    [16]

    Druffel E R M, Beaupré S R, Grotheer H, et al. Marine organic carbon and radiocarbon-present and future challenges[J]. Radiocarbon, 2022, 64(4):705-721. doi: 10.1017/RDC.2021.105

    [17]

    Barrett G T, Keaveney E, Reimer P J, et al. Ramped pyroxidation radiocarbon dating of a preservative contaminated early medieval wooden bowl[J]. Journal of Cultural Heritage, 2021, 50:150-162. doi: 10.1016/j.culher.2021.05.003

    [18]

    Hemingway J D, Galy V V, Gagnon A R, et al. Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS[J]. Radiocarbon, 2017, 59(1):179-193. doi: 10.1017/RDC.2017.3

    [19]

    Fernandez A, Santos G M, Williams E K, et al. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon[J]. Analytical Chemistry, 2014, 86(24):12085-12092. doi: 10.1021/ac502874j

    [20]

    Wu W F, Li H S, Wang N, et al. An approach for carbon content measurement in marine sediment: application of organic and elemental carbon analyzer[J]. Marine Environmental Research, 2023, 188:106000. doi: 10.1016/j.marenvres.2023.106000

    [21]

    Bao R, McNichol A P, Hemingway J D, et al. Influence of different acid treatments on the radiocarbon content spectrum of sedimentary organic matter determined by RPO/accelerator mass spectrometry[J]. Radiocarbon, 2019, 61(2):395-413. doi: 10.1017/RDC.2018.125

    [22]

    Barrett G T, Keaveney E, Lindroos A, et al. Ramped pyroxidation: a new approach for radiocarbon dating of lime mortars[J]. Journal of Archaeological Science, 2021, 129:105366. doi: 10.1016/j.jas.2021.105366

    [23]

    Keaveney E M, Barrett G T, Allen K, et al. A new ramped pyroxidation/combustion facility at 14CHRONO, Belfast: setup description and initial results[J]. Radiocarbon, 2021, 63(4):1273-1286. doi: 10.1017/RDC.2021.46

    [24]

    Pearson A, McNichol A P, Schneider R J, et al. Microscale AMS 14C measurement at NOSAMS[J]. Radiocarbon, 1997, 40(1):61-75. doi: 10.1017/S0033822200017902

    [25]

    Jull A J T, Burr G S. Accelerator mass spectrometry: is the future bigger or smaller?[J]. Earth and Planetary Science Letters, 2006, 243(3-4):305-325. doi: 10.1016/j.jpgl.2005.12.018

    [26]

    Roberts M L, Schneider R J, von Reden K F, et al. Progress on a gas-accepting ion source for continuous-flow accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):83-87.

    [27]

    von Reden K F, Roberts M L, Jenkins W J, et al. Software development for continuous-gas-flow AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2008, 266(10):2233-2237. doi: 10.1016/j.nimb.2008.03.001

    [28]

    Mahmoudi N, Porter T M, Zimmerman A R, et al. Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments[J]. Environmental Science & Technology, 2013, 47(23):13303-13312.

    [29]

    Galy V, Eglinton T. Protracted storage of biospheric carbon in the Ganges-Brahmaputra Basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293

    [30]

    Canuel E A, Hardison A K. Sources, ages, and alteration of organic matter in estuaries[J]. Annual Review of Marine Science, 2016, 8:409-434. doi: 10.1146/annurev-marine-122414-034058

    [31]

    Tesi T, Goñi M A, Langone L, et al. Reexposure and advection of 14C-depleted organic carbon from old deposits at the upper continental slope[J]. Global Biogeochemical Cycles, 2010, 24(4):GB4002.

    [32]

    McNichol A P, Aluwihare L I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC)[J]. Chemical Reviews, 2007, 107(2):443-466. doi: 10.1021/cr050374g

    [33]

    Bao R, Zhao M X, McNichol A, et al. Temporal constraints on lateral organic matter transport along a coastal mud belt[J]. Organic Geochemistry, 2019, 128:86-93. doi: 10.1016/j.orggeochem.2019.01.007

    [34]

    Carrie J, Sanei H, Stern H, et al. Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils[J]. Organic Geochemistry, 2012, 46:38-53. doi: 10.1016/j.orggeochem.2012.01.011

    [35]

    Baudin F, Disnar J R, Aboussou A, et al. Guidelines for Rock-Eval analysis of recent marine sediments[J]. Organic Geochemistry, 2015, 86:71-80. doi: 10.1016/j.orggeochem.2015.06.009

    [36]

    Behar F, Valérie B, De B Penteado H L. Rock-Eval 6 technology: performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2):111-134.

    [37]

    Capel E L, de la Rosa Arranz J M, González-Vila F J, et al. Elucidation of different forms of organic carbon in marine sediments from the Atlantic coast of Spain using thermal analysis coupled to isotope ratio and quadrupole mass spectrometry[J]. Organic Geochemistry, 2006, 37(12):1983-1994. doi: 10.1016/j.orggeochem.2006.07.025

    [38]

    Cramer B, Faber E, Gerling A, et al. Reaction kinetics of stable carbon isotopes in natural gas-insights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15(3):517-532.

    [39]

    Hazera J, Sebag D, Kowalewski I, et al. Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification[J]. Biogeoscience, 2023, 20(24):5229-5242. doi: 10.5194/bg-20-5229-2023

    [40]

    Delqué Količ E. Direct radiocarbon dating of pottery: selective heat treatment to retrieve smoke-derived carbon[J]. Radiocarbon, 1995, 37(2):275-284. doi: 10.1017/S0033822200030745

    [41]

    Hedges R E M, Tiemei C, Housley R A. Results and methods in the radiocarbon dating of pottery[J]. Radiocarbon, 1992, 34(3):906-915. doi: 10.1017/S0033822200064237

    [42]

    McGeehin J, Burr G S, Jull A J T, et al. Stepped-combustion 14C dating of sediment: a comparison with established techniques[J]. Radiocarbon, 2001, 43(2A):255-261. doi: 10.1017/S003382220003808X

    [43]

    McGeehin J, Burr G S, Hodgins G, et al. Stepped-combustion 14C dating of bomb carbon in lake sediment[J]. Radiocarbon, 2004, 46(2):893-900. doi: 10.1017/S0033822200035931

    [44]

    Cheng P, Fu Y C. Stepped-combustion 14C dating in loess-paleosol sediment[J]. Radiocarbon, 2020, 62(5):1209-1220. doi: 10.1017/RDC.2020.25

    [45]

    Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy & Fuels, 1998, 12(5):864-869.

    [46]

    Hemingway J D, Rothman D H, Rosengard S Z, et al. Technical note: an inverse method to relate organic carbon reactivity to isotope composition from serial oxidation[J]. Biogeosciences, 2017, 14(22):5099-5114. doi: 10.5194/bg-14-5099-2017

    [47]

    Williams E K, Rosenheim B E, McNichol A P, et al. Charring and non-additive chemical reactions during ramped pyrolysis: applications to the characterization of sedimentary and soil organic material[J]. Organic Geochemistry, 2014, 77:106-114. doi: 10.1016/j.orggeochem.2014.10.006

    [48]

    Sanderman J, Grandy A S. Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times[J]. Soil, 2020, 6(1):131-144. doi: 10.5194/soil-6-131-2020

    [49]

    Zigah P K, Minor E C, McNichol A P, et al. Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses[J]. Geochimica et Cosmochimica Acta, 2017, 208:102-118. doi: 10.1016/j.gca.2017.03.021

    [50]

    Rogers J A, Galy V, Kellerman A M, et al. Limited presence of permafrost dissolved organic matter in the Kolyma River, Siberia revealed by ramped oxidation[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(7):e2020JG005977. doi: 10.1029/2020JG005977

    [51]

    Huang W H, Yang H Y, He S F, et al. Thermochemical decomposition reveals distinct variability of sedimentary organic carbon reactivity along the Yangtze River estuary-shelf continuum[J]. Marine Chemistry, 2023, 257:104326. doi: 10.1016/j.marchem.2023.104326

    [52]

    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1):153-160

    YAO Peng, YU Zhigang, GUO Zhigang. Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1):153-160.]

    [53]

    Rosenheim B E, Galy V. Direct measurement of riverine particulate organic carbon age structure[J]. Geophysical Research Letters, 2012, 39(19):L19703.

    [54]

    Williams E K, Rosenheim B E. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2322-2335. doi: 10.1002/2015GC005839

    [55]

    Bao R, Strasser M, McNichol A P, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Communications, 2018, 9(1):121. doi: 10.1038/s41467-017-02504-1

    [56]

    Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870

    [57]

    Zhang X W, Bianchi T S, Cui X Q, et al. Permafrost organic carbon mobilization from the watershed to the Colville River Delta: evidence from 14C ramped pyrolysis and lignin biomarkers[J]. Geophysical Research Letters, 2017, 44(22):11491-11500.

    [58]

    Shen Z X, Rosenheim B E, Törnqvist T E, et al. Engineered continental-scale rivers can drive changes in the carbon cycle[J]. AGU Advances, 2021, 2(1):e2020AV000273. doi: 10.1029/2020AV000273

    [59]

    Bao R, McNichol A P, McIntyre C P, et al. Dimensions of radiocarbon variability within sedimentary organic matter[J]. Radiocarbon, 2018, 60(3):775-790. doi: 10.1017/RDC.2018.22

    [60]

    Hemingway J D, Henkes G A. A disordered kinetic model for clumped isotope bond reordering in carbonates[J]. Earth and Planetary Science Letters, 2021, 566:116962. doi: 10.1016/j.jpgl.2021.116962

    [61]

    Nizam S, Sen I S, Vinoj V, et al. Biomass-derived provenance dominates glacial surface organic carbon in the western Himalaya[J]. Environmental Science & Technology, 2020, 54(14):8612-8621.

    [62]

    Chi J L, Fan Y K, Wang L J, et al. Retention of soil organic matter by occlusion within soil minerals[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(3):727-746. doi: 10.1007/s11157-022-09628-x

    [63]

    Hemingway J D, Rothman D H, Grant K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760):228-231. doi: 10.1038/s41586-019-1280-6

    [64]

    Grant K E, Galy V V, Chadwick O A, et al. Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization[J]. Biogeochemistry, 2019, 144(3):291-304. doi: 10.1007/s10533-019-00586-1

    [65]

    Cui X Q, Mucci A, Bianchi T S, et al. Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions[J]. Science Advances, 2022, 8(46):eadd0610. doi: 10.1126/sciadv.add0610

    [66]

    Hage S, Galy V V, Cartigny M J B, et al. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits[J]. Geology, 2020, 48(9):882-887. doi: 10.1130/G47320.1

    [67]

    Hage S, Galy V V, Cartigny M J B, et al. Turbidity currents can dictate organic carbon fluxes across river-fed fjords: an example from Bute Inlet (BC, Canada)[J]. Journal of Geophysical Research:Biogeosciences, 2022, 127(6):e2022JG006824. doi: 10.1029/2022JG006824

    [68]

    Zhang Y S, Galy V, Yu M, et al. Terrestrial organic carbon age and reactivity in the Yellow River fueling efficient preservation in marine sediments[J]. Earth and Planetary Science Letters, 2022, 585:117515. doi: 10.1016/j.jpgl.2022.117515

    [69]

    Rosenheim B E, Santoro J A, Gunter M, et al. Improving antarctic sediment 14C dating using ramped pyrolysis: an example from the Hugo island trough[J]. Radiocarbon, 2013, 55(1):115-126. doi: 10.2458/azu_js_rc.v55i1.16234

    [70]

    Vetter L, Rosenheim B E, Fernandez A, et al. Short organic carbon turnover time and narrow 14C age spectra in early Holocene wetland paleosols[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1):142-155. doi: 10.1002/2016GC006526

    [71]

    Subt C, Fangman K A, Wellner J S, et al. Sediment chronology in Antarctic deglacial sediments: reconciling organic carbon 14C ages to carbonate 14C ages using ramped PyrOx[J]. The Holocene, 2016, 26(2):265-273. doi: 10.1177/0959683615608688

    [72]

    Venturelli R A, Siegfried M R, Roush K A, et al. Mid-Holocene grounding line retreat and readvance at Whillans ice stream, west Antarctica[J]. Geophysical Research Letters, 2020, 47(15):e2020GL088476. doi: 10.1029/2020GL088476

    [73]

    Pendergraft M A, Dincer Z, Sericano J L, et al. Linking ramped pyrolysis isotope data to oil content through PAH analysis[J]. Environmental Research Letters, 2013, 8(4):044038. doi: 10.1088/1748-9326/8/4/044038

    [74]

    Pendergraft M A, Rosenheim B E. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis[J]. Environmental Science & Technology, 2014, 48(18):10966-10974.

    [75]

    Rogers K L, Bosman S H, Lardie-Gaylord M, et al. Petrocarbon evolution: ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the deepwater horizon oil spill in the Gulf of Mexico[J]. PLoS One, 2019, 14(2):e0212433. doi: 10.1371/journal.pone.0212433

  • 加载中

(5)

计量
  • 文章访问数:  60
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-01-08
修回日期:  2024-01-29
刊出日期:  2025-06-28

目录