90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程

陶菁, 刘升发, 艾丽娜, 曹鹏, 黄牧, 张辉, 吴凯凯, 齐文菁, 方桐冰, 孟元库, 石学法. 90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程[J]. 海洋地质与第四纪地质, 2024, 44(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2023121201
引用本文: 陶菁, 刘升发, 艾丽娜, 曹鹏, 黄牧, 张辉, 吴凯凯, 齐文菁, 方桐冰, 孟元库, 石学法. 90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程[J]. 海洋地质与第四纪地质, 2024, 44(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2023121201
TAO Jing, LIU Shengfa, AI Lina, CAO Peng, HUANG Mu, ZHANG Hui, WU Kaikai, QI Wenjing, FANG Tongbing, MENG Yuanku, SHI Xuefa. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2023121201
Citation: TAO Jing, LIU Shengfa, AI Lina, CAO Peng, HUANG Mu, ZHANG Hui, WU Kaikai, QI Wenjing, FANG Tongbing, MENG Yuanku, SHI Xuefa. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2023121201

90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程

  • 基金项目: 全球变化与海气相互作用(二期)专项“西印度洋 WIND-CJ06 区块海洋底质与底栖生物调查”(GASI-01-WIND-CJ06)
详细信息
    作者简介: 陶菁(1998—),女,硕士研究生,主要从事海洋沉积学研究,E-mail:taojmagia@163.com
    通讯作者: 刘升发(1979—),男,研究员,研究方向为海洋沉积学,E-mail:liushengfa@fio.org.cn
  • 中图分类号: P736.2

Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP

More Information
  • 通过对阿拉伯海中部 AS06-13 岩芯的地球化学特征、黏土矿物组成特征分析,结合有孔虫壳体 AMS14C 年龄和氧同位素数据建立的年代框架,探讨了阿拉伯海中部海域沉积物的来源及沉积过程。结果显示:AS06-13 岩芯涵盖了阿拉伯海 90 kaBP以来的沉积序列,平均沉积速率为 2.34 cm/ka;稀土元素含量为 64~194 μg/g,平均值为 114 μg/g,δEu(平均值为0.71)负异常显著;黏土矿物主要由伊利石(平均含量为56%)、坡缕石(平均含量为18%)、绿泥石(平均含量为15%)、高岭石(平均含量为8%)和蒙脱石(平均含量为2%)组成。球粒陨石标准化的稀土元素配分曲线表现为轻稀土元素富集,重稀土元素亏损的右倾模式,表明研究区沉积物以陆源碎屑为主,通过 δEuUCC-(La/Yb)UCC 判别图进一步将 90 kaBP 以来阿拉伯海中部海域沉积物来源变化划分为 3 个阶段:S1阶段(90~73 kaBP)研究区主要接受印度河入海物质和阿拉伯半岛风尘物质的输入;S2阶段(73~11 kaBP)仍然以印度河和阿拉伯半岛风尘的物质输入为主,但逐渐受到印度半岛的片麻岩区物质的影响;S3 阶段(11~0 kaBP)主要接受来自印度河的河流沉积物、阿拉伯半岛风尘、印度半岛的片麻岩区和德干高原物质的共同沉积。坡缕石含量和高岭石/伊利石比值指示 90 kaBP 以来阿拉伯海中部海域沉积物的陆源物质输入和沉积演化主要受季风和海平面的共同控制,西南季风的减弱和海平面下降导致印度河、德干高原物质对研究区的输入量增多,东北季风的增强和西北风相对增强使阿拉伯半岛的风尘输入增加;全新世海平面快速上升使输入阿拉伯海的河流沉积物急剧减少。

  • 加载中
  • 图 1  阿拉伯海 AS06-13 岩芯位置及周边季风与洋流示意图[21]

    Figure 1. 

    图 2  AS06-13 岩芯年龄框架

    Figure 2. 

    图 3  AS06-13 岩芯沉积物稀土元素含量及相关参数垂向分布

    Figure 3. 

    图 4  AS06-13 岩芯黏土矿物含量垂向分布

    Figure 4. 

    图 5  AS06-13 岩芯沉积物稀土元素球粒陨石标准化配分曲线

    Figure 5. 

    图 6  AS06-13 岩芯沉积物 δEuUCC-(La/Yb)UCC 物源判别图

    Figure 6. 

    图 7  AS06-13 岩芯 90 kaBP 以来的沉积过程综合分析图

    Figure 7. 

    图 8  阿拉伯海中部海域 90 kaBP 以来沉积演化示意图

    Figure 8. 

    表 1  AS06-13 岩芯有孔虫壳体 AMS14C 测年数据

    Table 1.  AMS14C dating data of foraminifera shell from Core AS06-13

    层位/cmAMS14C 年龄/aBP日历年龄/kaBP沉积速率/(cm/ka)
    3~44040±303.8280.91
    23~2411910±4013.1952.14
    43~4420180±6023.3151.98
    63~6427920±12031.1382.56
    83~8433610±24037.4523.17
    下载: 导出CSV
  • [1]

    Tiedemann R, Sarnthein M, Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659[J]. Paleoceanography, 1994, 9(4):619-638. doi: 10.1029/94PA00208

    [2]

    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    [3]

    Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the world ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X

    [4]

    Sebastian T, Nath B N, Mascarenhas-Pereira M B L, et al. A 50 kyr record of eolian sedimentation in the Eastern Arabian Sea-Dust deposition changes synchronous with the Northern Hemisphere Climatic Oscillations[J]. Marine Geology, 2023, 459:107046. doi: 10.1016/j.margeo.2023.107046

    [5]

    陈忠, 颜文. 海洋沉积粘土矿物与古气候、古环境演化响应的研究进展[J]. 海洋科学, 2000, 24(2):25-27 doi: 10.3969/j.issn.1000-3096.2000.02.009

    CHEN Zhong, YAN Wen. Advances of the studies on clay minerals in marine sedimenis and its response to evolution of paleoclimate and paleoenvironment[J]. Marine Sciences, 2000, 24(2):25-27.] doi: 10.3969/j.issn.1000-3096.2000.02.009

    [6]

    Avinash K, Manjunath B R, Kurian P J. Glacial-interglacial productivity contrasts along the eastern Arabian Sea: dominance of convective mixing over upwelling[J]. Geoscience Frontiers, 2015, 6(6):913-925. doi: 10.1016/j.gsf.2015.03.003

    [7]

    Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397:20-30. doi: 10.1016/j.palaeo.2013.04.012

    [8]

    Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446:45-55. doi: 10.1016/j.jpgl.2016.04.022

    [9]

    Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3):82-90. doi: 10.1007/s13131-017-1041-z

    [10]

    Neelavannan K, Hussain S M, Nishath N M, et al. Paleoproductivity shifts since the last 130 ka off Lakshadweep, Southeastern Arabian Sea[J]. Regional Studies in Marine Science, 2021, 44:101776. doi: 10.1016/j.rsma.2021.101776

    [11]

    Chen H J, Xu Z K, Clift P D, et al. Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2019, 174:11-22. doi: 10.1016/j.jseaes.2018.10.012

    [12]

    Garzanti E, Vezzoli G, Andò S, et al. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 2005, 229(3-4):287-302. doi: 10.1016/j.jpgl.2004.11.008

    [13]

    Limmer D R, Böning P, Giosan L, et al. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01008.

    [14]

    Rao V P, Rao B R. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India[J]. Continental Shelf Research, 1995, 15(14):1757-1771. doi: 10.1016/0278-4343(94)00092-2

    [15]

    Chauhan O S, Gujar A R. Surficial clay mineral distribution on the southwestern continental margin of India: evidence of input from the Bay of Bengal[J]. Continental Shelf Research, 1996, 16(3):321-333. doi: 10.1016/0278-4343(95)00015-S

    [16]

    Chauhan O S, Sukhija B S, Gujar A R, et al. Late-Quaternary variations in clay minerals along the SW continental margin of India: evidence of climatic variations[J]. Geo-Marine Letters, 2000, 20(2):118-122. doi: 10.1007/s003670000043

    [17]

    Kessarkar P M, Rao V P, Ahmad S M, et al. Clay minerals and Sr-Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance[J]. Marine Geology, 2003, 202(1-2):55-69. doi: 10.1016/S0025-3227(03)00240-8

    [18]

    Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance and silicate weathering/erosion from the eastern Arabian Sea and their responses to the Indian summer monsoon since the Mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4):e2019PA003732. doi: 10.1029/2019PA003732

    [19]

    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1):L01702.

    [20]

    Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0

    [21]

    Cai M J, Colin C, Xu Z K, et al. Climate and sea level forcing of terrigenous sediments input to the eastern Arabian Sea since the last glacial period[J]. Marine Geology, 2022, 450:106860. doi: 10.1016/j.margeo.2022.106860

    [22]

    Jonell T N, Li Y T, Blusztajn J, et al. Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance[J]. Chemical Geology, 2018, 485:56-73. doi: 10.1016/j.chemgeo.2018.03.036

    [23]

    Thamban M, Rao V P, Schneider R R. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India[J]. Marine Geology, 2002, 186(3-4):527-539. doi: 10.1016/S0025-3227(02)00268-2

    [24]

    Aswini M A, Kumar A, Das S K. Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data: A case study during a dust storm over the Arabian Sea[J]. Atmospheric Research, 2020, 239:104910. doi: 10.1016/j.atmosres.2020.104910

    [25]

    Ferrier K L, Mitrovica J X, Giosan L, et al. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea[J]. Earth and Planetary Science Letters, 2015, 416:12-20. doi: 10.1016/j.jpgl.2015.01.026

    [26]

    Steinke S, Hanebuth T J J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4):199-210. doi: 10.1016/j.margeo.2008.01.005

    [27]

    Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O J, McCaffrey B. External Controls of Deep-Water Depositional Systems. Tulsa, Oklahoma, USA: SEPM, 2009, 92: 15-39.

    [28]

    Bourget J, Zaragosi S, Ellouz-Zimmermann S, et al. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems[J]. Marine Geology, 2010, 274(1-4):187-208. doi: 10.1016/j.margeo.2010.04.005

    [29]

    Lathika N, Rahaman W, Tarique M, et al. Deep water circulation in the Arabian Sea during the last glacial cycle: Implications for paleo-redox condition, carbon sink and atmospheric CO2 variability[J]. Quaternary Science Reviews, 2021, 257:106853. doi: 10.1016/j.quascirev.2021.106853

    [30]

    Clift P D, Giosan L, Blusztajn J, et al. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon[J]. Geology, 2008, 36(1):79-82. doi: 10.1130/G24315A.1

    [31]

    Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea[J]. Geology, 2000, 28(4):375-378. doi: 10.1130/0091-7613(2000)28<375:EOCSLA>2.0.CO;2

    [32]

    Goswami V, Singh S K, Bhushan R, et al. Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: Impact of monsoon and surface water circulation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01001.

    [33]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1):215-230. doi: 10.1017/S0033822200013904

    [34]

    Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    [35]

    Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5

    [36]

    齐文菁, 李小艳, 范德江, 等. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2):92-100

    QI Wenjing, LI Xiaoyan, FAN Dejiang, et al. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2):92-100.]

    [37]

    Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    [38]

    Ehrmann W, Schmiedl G. Nature and dynamics of North African humid and dry periods during the last 200, 000 years documented in the clay fraction of Eastern Mediterranean deep-sea sediments[J]. Quaternary Science Reviews, 2021, 260:106925. doi: 10.1016/j.quascirev.2021.106925

    [39]

    Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages[J]. Quaternary Science Reviews, 2015, 111:94-106. doi: 10.1016/j.quascirev.2015.01.012

    [40]

    Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites[J]. Geochimica et Cosmochimica Acta, 1978, 42(8):1199-1212. doi: 10.1016/0016-7037(78)90114-X

    [41]

    Goldberg E D, Griffin J J. The sediments of the northern Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3):513-537. doi: 10.1016/0011-7471(70)90065-3

    [42]

    Kolla V, Kostecki J A, Robinson F, et al. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Petrology, 1981, 51(2):563-569.

    [43]

    McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200.

    [44]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 58(22):4955-4972. doi: 10.1016/0016-7037(94)90224-0

    [45]

    毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348 doi: 10.3969/j.issn.1672-6561.2011.04.002

    MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4):337-348.] doi: 10.3969/j.issn.1672-6561.2011.04.002

    [46]

    Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea[J]. Marine Geology, 2013, 346:208-219. doi: 10.1016/j.margeo.2013.09.007

    [47]

    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance[J]. Marine Geology, 2014, 357:12-24. doi: 10.1016/j.margeo.2014.07.002

    [48]

    Mir I A, Mascarenhas M B L, Khare N. Geochemistry and granulometry as indicators of paleoclimate, weathering, and provenance of sediments for the past 1, 00, 000 years in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2022, 227:105102. doi: 10.1016/j.jseaes.2022.105102

    [49]

    Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003, 3: 1-64.

    [50]

    Kurian S, Nath B N, Kumar N C, et al. Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: inferring provenance, weathering, and the nature of organic matter[J]. Journal of Sedimentary Research, 2013, 83(6):427-442. doi: 10.2110/jsr.2013.36

    [51]

    Babechuk M G, Widdowson M, Kamber B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363:56-75. doi: 10.1016/j.chemgeo.2013.10.027

    [52]

    Moreno T, Querol X, Castillo S, et al. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor[J]. Chemosphere, 2006, 65(2):261-270. doi: 10.1016/j.chemosphere.2006.02.052

    [53]

    Suresh K, Singh U, Kumar A, et al. Provenance tracing of long-range transported dust over the Northeastern Arabian Sea during the southwest monsoon[J]. Atmospheric Research, 2021, 250:105377. doi: 10.1016/j.atmosres.2020.105377

    [54]

    Khonde N N, Maurya D M, Chamyal L S. Late Pleistocene-Holocene clay mineral record from the Great Rann of Kachchh basin, Western India: implications for palaeoenvironments and sediment sources[J]. Quaternary international, 2017, 443:86-98. doi: 10.1016/j.quaint.2016.07.024

    [55]

    陈红瑾, 徐兆凯, 蔡明江, 等. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义[J]. 地球科学, 2019, 44(8):2803-2817

    CHEN Hongjin, XU Zhaokai, CAI Mingjiang, et al. Provenance of clay-sized detrital sediments and its paleoenvironmental implications at Site U1456 in the Eastern Arabian Sea since 30 ka[J]. Earth Science, 2019, 44(8):2803-2817.]

    [56]

    Pourmand A, Marcantonio F, Schulz H. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka[J]. Earth and Planetary Science Letters, 2004, 221(1-4):39-54. doi: 10.1016/S0012-821X(04)00109-8

    [57]

    Turney C S M, Jones R T, Fogwill C, et al. A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years[J]. Climate of the Past, 2016, 12(2):189-200. doi: 10.5194/cp-12-189-2016

    [58]

    Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203

    [59]

    Middleton N J. Dust storms in the Middle East[J]. Journal of Arid Environments, 1986, 10(2):83-96. doi: 10.1016/S0140-1963(18)31249-7

    [60]

    Sirocko F, Sarnthein M. Wind-borne deposits in the northwestern Indian Ocean: Record of Holocene sediments versus modern satellite data[M]//Leinen M, Sarnthein M. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Dordrecht: Springer, 1989: 401-433.

    [61]

    Prins M A, Postma G, Cleveringa J, et al. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan[J]. Marine Geology, 2000, 169(3-4):327-349. doi: 10.1016/S0025-3227(00)00086-4

    [62]

    Von Rad U, Tahir M. Late Quaternary sedimentation on the outer Indus shelf and slope (Pakistan): evidence from high-resolution seismic data and coring[J]. Marine Geology, 1997, 138(3-4):193-236. doi: 10.1016/S0025-3227(96)00090-4

    [63]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265:228-231. doi: 10.1126/science.265.5169.228

  • 加载中

(8)

(1)

计量
  • 文章访问数:  971
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2023-12-12
修回日期:  2024-01-30
录用日期:  2024-01-30
刊出日期:  2024-04-28

目录