现行黄河口分汊河道的分流特征及其影响机制

葛春海, 范勇勇, 巴旗, 孙超, 吴振, 吴晓, 王厚杰, 毕乃双. 现行黄河口分汊河道的分流特征及其影响机制[J]. 海洋地质与第四纪地质, 2024, 44(2): 131-145. doi: 10.16562/j.cnki.0256-1492.2023030301
引用本文: 葛春海, 范勇勇, 巴旗, 孙超, 吴振, 吴晓, 王厚杰, 毕乃双. 现行黄河口分汊河道的分流特征及其影响机制[J]. 海洋地质与第四纪地质, 2024, 44(2): 131-145. doi: 10.16562/j.cnki.0256-1492.2023030301
GE Chunhai, FAN Yongyong, BA Qi, SUN Chao, WU Zhen, WU Xiao, WANG Houjie, BI Naishuang. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 131-145. doi: 10.16562/j.cnki.0256-1492.2023030301
Citation: GE Chunhai, FAN Yongyong, BA Qi, SUN Chao, WU Zhen, WU Xiao, WANG Houjie, BI Naishuang. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 131-145. doi: 10.16562/j.cnki.0256-1492.2023030301

现行黄河口分汊河道的分流特征及其影响机制

  • 基金项目: 国家自然科学基金“调水调沙影响下黄河口冲淤格局转变的动力机制研究”(42076175);山东省地矿局海岸带地质环境保护重点实验室开放基金项目(SYS202101)
详细信息
    作者简介: 葛春海(1995—),男,硕士研究生,海洋地质专业,E-mail:17806236203@163.com
    通讯作者: 毕乃双(1981—),男,教授,主要从事河口沉积动力学、地貌学研究,E-mail:binaishuang@ouc.edu.cn
  • 中图分类号: P736

Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms

More Information
  • 自2013年黄河尾闾河道出汊形成双槽入海的河口汊道,控制了河口流量的分配,但其分流特征及其影响机制尚不清楚。本文基于Delft3D构建了黄河口汊道的水动力三维数值模型,模拟了不同工况下河口汊道的分流特征,揭示了其影响机制。结果表明:河口汊道的分流不对称性随流量的增加而减小,流量增加加大了东汊与北汊河道的水位梯度差,使得从东汊河道的流量增量较北汊河道大,河流流量的分配更加均匀。潮汐作用增强了河口汊道的流量不对称性,而随着径流量的增加,潮汐的增强作用逐渐减弱。这主要由于在半日潮的作用下,东汊和北汊河道水位梯度的差异,形成河口潮汐的“东阻北促”效应,增强了河口汊道的分流不对称性。

  • 加载中
  • 图 1  黄河三角洲近岸海域观测站(a)及黄河口分汊河道(b)

    Figure 1. 

    图 2  模型网格和水深

    Figure 2. 

    图 3  2019年利津水文站6月2日至8月21日日均径流量

    Figure 3. 

    图 4  渤海模拟(黑实线)与观测(红点)水位对比

    Figure 4. 

    图 5  渤海模拟水位与观测水位的标准化泰勒图

    Figure 5. 

    图 6  河口A30、B30、M2观测站流速和流向实测(红点)与模拟(实线)结果对比验证

    Figure 6. 

    图 7  黄河口分汊河道日均流量及流量差

    Figure 7. 

    图 8  河口汊道S2、S3断面流量不对称系数

    Figure 8. 

    图 9  低流量状态下河口汊道E2、N2站的流速和水位(a)及逐时流量不对称系数(b)

    Figure 9. 

    图 10  高流量状态下河口汊道E2、N2站的流速和水位(a)及瞬时流量不对称系数(b)

    Figure 10. 

    图 11  河口北汊、东汊河道日均水位梯度对比(a)及北汊、东汊水位梯度差与河流日均径流量(b)

    Figure 11. 

    图 12  日均径流量Q与水位梯度差$ ⟨\mathrm{\Delta }\phi ⟩ $关系(a)及水位梯度差$ ⟨\mathrm{\Delta }\phi ⟩ $与流量不对称系数ψ关系(b)

    Figure 12. 

    图 13  分汊点A1的水位及河口汊道的水位对比

    Figure 13. 

    图 14  仅潮汐作用时河口汊道各断面日均流量对比

    Figure 14. 

    图 15  北汊S2断面(a)与东汊S3断面(b)的斯托克斯流Qs、补偿回流Qr、残余项Qn以及流量Qt对比

    Figure 15. 

    图 16  东汊河道E2站点(a)与北汊河道N2站点(b)的水位流速及东汊河道E2站点(c)与北汊河道N2站点(d)水位流速相干分析

    Figure 16. 

    图 17  河潮相互作用与仅河流作用时的流量不对称系数对比(a)及日均径流量Q与(ψ-ψr)/ψr的关系(b)

    Figure 17. 

  • [1]

    Sassi M G, Hoitink A J F, Brye B, et al. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta [J]. Ocean Dynamics., 2011, 61(12): 2211-2228. doi: 10.1007/s10236-011-0473-9

    [2]

    Kleinhans M G, Jagers H R A, Mosselman E, et al. Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models [J]. Water Resources Research, 2008, 44(8): W9526.

    [3]

    Hardy R J, Lane S N, Yu D. Flow structures at an idealized bifurcation: a numerical experiment [J]. Earth Surface Processes and Landforms., 2011, 36(15): 2083-2096. doi: 10.1002/esp.2235

    [4]

    Kleinhans M G, Ferguson R I, Lane S N, et al. Splitting rivers at their seams: bifurcations and avulsion [J]. Earth Surface Processes and Landforms., 2013, 38(1): 47-61. doi: 10.1002/esp.3268

    [5]

    徐丛亮, 陈沈良, 陈俊卿. 新情势下黄河口出汊流路三角洲体系的演化模式[J]. 海岸工程, 2018, 37(4):35-43

    XU Congliang, CHEN Shenliang, CHEN Junqing. Evolution mode of channel bifurcation delta system at the Yellow River Estuary the new station [J]. Coastal Engineering, 2018, 37(4): 35-43.

    [6]

    Feng H C, Tang L Q, Wang Y H, et al. Effects of recent morphological change on the redistribution of flow discharge in the Yangtze River Delta [J]. Continental Shelf Research., 2020, 208: 104218. doi: 10.1016/j.csr.2020.104218

    [7]

    Leonardi N, Kolker A S, Fagherazzi S. Interplay between river discharge and tides in a delta distributary [J]. Advances in Water Resources, 2015, 80: 69-78. doi: 10.1016/j.advwatres.2015.03.005

    [8]

    Shaw J B, Mohrig D. The importance of erosion in distributary channel network growth, Wax Lake delta, Louisiana, USA [J]. Geology (Boulder), 2014, 42(1): 31-34. doi: 10.1130/G34751.1

    [9]

    Guo L C, Wegen M V D, Jay D A, et al. River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary [J]. Journal of Geophysical Research:Oceans, 2015, 120(5): 3499-3521. doi: 10.1002/2014JC010491

    [10]

    Buschman F A, Hoitink A J F, Vegt V D M, et al. Water and suspended sediment division at a stratified tidal junction [J]. Journal of Geophysical Research:Oceans, 2013, 118(3): 1459-1472. doi: 10.1002/jgrc.20124

    [11]

    Edmonds D A, Slingerland R L. Stability of delta distributary networks and their bifurcations [J]. Water Resources Research, 2008, 44: W9426.

    [12]

    Edmonds D A. Stability of backwater-influenced river bifurcations: A study of the Mississippi-Atchafalaya system [J]. Geophysical Research Letters, 2012, 39: 8402.

    [13]

    李鹏, 陈沈良, 刘清兰, 等. 黄河尾闾沙洲及河口形态对水沙变化的响应[J]. 泥沙研究, 2022, 47(2):57-64

    LI Peng, CHEN Shenliang, LIU Qinglan, et al. Responses of the processes in the Yellow River lowermost channel sandbars and estuary to the variation of water and sediment [J]. Journal of Sediment Research, 2022, 47(2): 57-64.

    [14]

    冯浩川, 王崇浩, 郭传胜, 等. 汊道平面形态对河口潮波传播的影响[J]. 中国水利水电科学研究院学报, 2022, 20(3):204-212

    FENG Haochuan, WANG Chonghao, GUO Chuansheng, et al. Impacts of channel plane form on tidal propagation in river estuaries [J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(3): 204-212.

    [15]

    Wang H J, Yang Z S, Li Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth [J]. Continental Shelf Research, 2007, 27(6): 854-871. doi: 10.1016/j.csr.2006.12.002

    [16]

    Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review [J]. Global and Planetary Change, 2017, 157: 93-113. doi: 10.1016/j.gloplacha.2017.08.005

    [17]

    Bi N S, Sun Z Q, Wang H J, et al. Response of channel scouring and deposition to the regulation of large reservoirs: A case study of the lower reaches of the Yellow River (Huanghe) [J]. Journal of Hydrology, 2019, 568: 972-984. doi: 10.1016/j.jhydrol.2018.11.039

    [18]

    Wu X, Bi N S, Yuan, P, et al. Sediment dispersal and accumulation off the present Huanghe (Yellow River) delta as impacted by the Water-Sediment Regulation Scheme [J]. Continental Shelf Research, 2015, 111: 126-138. doi: 10.1016/j.csr.2015.11.003

    [19]

    Wang H J, Bi N S, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary [J]. Journal of Hydrology, 2010, 391(3-4): 302-313. doi: 10.1016/j.jhydrol.2010.07.030

    [20]

    王厚杰, 杨作升, 毕乃双, 等. 2005年黄河调水调沙期间河口入海主流的快速摆动[J]. 科学通报, 2005, 50(23):2656-2662 doi: 10.1360/csb2005-50-23-2656

    WANG Houjie, YANG Zuosheng, BI Naishuang, et al. Rapid shifts of the river plume pathway off the Huanghe mouth during Water-Sediment Regulation Scheme in 2005 [J]. Chinese Science Bulletin, 2005, 50(23): 2656-2662. doi: 10.1360/csb2005-50-23-2656

    [21]

    徐丛亮, 谷硕, 刘喆, 等. 黄河调水调沙14a来河口拦门沙形态变化特征[J]. 人民黄河, 2016, 38(10):69-73

    XU Congliang, GU Shuo, LIU Zhe, et al. Characteristics of the river mouth bar in the past 14 years of the Yellow River Water-Sediment Regulation [J]. Yellow River, 2016, 38(10): 69-73.

    [22]

    陈沈良, 于守兵, 凡姚申. 现行黄河口区的水沙动力与汊道演变[J]. 人民黄河, 2022, 44(4):25-30

    CHEN Shenliang, YU Shoubing, FAN Yaoshen. Water and sediment dynamics of the Active Yellow River mouth and its evolution of distributary channels [J]. Yellow River, 2022, 44(4): 25-30.

    [23]

    杜小康, 王开荣, 裴洪杨, 等. 黄河口清水沟流路地貌特征研究[J]. 海洋科学, 2021, 45(12):77-85

    DU Xiaokang, WANG Kairong, PEI hongyang, et al. Geomorphic characteristics of the Qingshuigou flow path in the Yellow River estuary [J]. Marine Sciences, 2021, 45(12): 77-85.

    [24]

    左婧, 高源, 徐丛亮. 基于DEM技术的黄河口拦门沙分析[J]. 人民黄河, 2022, 44(1):33-36

    ZUO Jing, GAO Yuan, XU Congliang. Analysis of sandbar at Yellow River Estuary based on DEM technology [J]. Yellow River, 2022, 44(1): 33-36.

    [25]

    刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1):139-152

    LIU Qinglan, CHEN Junqing, CHEN Shenliang. Spatiotemporal evolution of Yellow River estuarine channel and its influencing factors since the water-sediment regulation scheme [J]. Acta Geographica Sinica, 2021, 76(1): 139-152.

    [26]

    王厚杰, 杨作升, 毕乃双. 黄河口泥沙输运三维数值模拟Ⅰ——黄河口切变锋[J]. 泥沙研究, 2006(2):1-9

    WANG Houjie, YANG Zuosheng, BI Naishuang. 3-D simulation of the suspended sediment transport in the Yellow River mouth Ⅰ: Shear front off the Yellow River mouth [J]. Journal of Sediment Research, 2006(2): 1-9.

    [27]

    Buschman F A, Hoitink A J F, van der Vegt M, et al. Subtidal flow division at a shallow tidal junction [J]. Water Resources, 2010, 44(Res): W12515.

    [28]

    Guo L, Wegen M V D, Roelvink J A, et al. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics [J]. Journal of Geophysical Research:Earth Surface, 2014, 119(11): 2315-2334. doi: 10.1002/2014JF003110

    [29]

    Hu K L, Ding P X, Wang Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China [J]. Journal of Marine Systems, 2009, 77(1-2): 114-136. doi: 10.1016/j.jmarsys.2008.11.014

    [30]

    Leonardi N, Canestrelli A, Sun T, et al. Effect of tides on mouth bar morphology and hydrodynamics [J]. Journal of Geophysical Research:Oceans, 2013, 118(9): 4169-4183. doi: 10.1002/jgrc.20302

    [31]

    Leonardi, N. , Sun, T., Fagherazzi, S., Modeling Tidal Bedding In Distributary-Mouth Bars [J]. Journal of Sedimentary Research, 2014, 84: 499-512. doi: 10.2110/jsr.2014.42

    [32]

    Luan H L, Ding P X, Wang Z B, et al. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends [J]. Geomorphology, 2017, 290: 347-364. doi: 10.1016/j.geomorph.2017.04.016

    [33]

    刘猛, 毕乃双, 纪金龙, 等. 现行黄河三角洲叶瓣蚀积演化对动力环境的影响[J]. 海洋地质前沿, 2018, 34(6):8-18

    LIU Meng, BI Naishuang, JI Jinlong, et al. Evolution of the active deltaic lobe of Huang River and its response to hydrodynamics [J]. Marine Geology Frontiers, 2018, 34(6): 8-18.

    [34]

    杨洋. 黄河口滨海区涨落潮不对称与地貌动力机制[D]. 华东师范大学, 2021

    YANG Yang. The asymmetry of flood and ebb and geomorphic dynamic mechanism in coastal area of the Yellow River Estuary [D]. Doctor Dissertation of East China Normal University, 2021.

    [35]

    Wang, C H, Liu, Z Q, Harris, C, et al. The Impact of Winter Storms on Sediment Transport Through a Narrow Strait, Bohai, China [J]. Journal of Geophysical Research:Oceans., 2020, 125: e2020J-e16069J.

    [36]

    Fan Y S, Chen S L, Pan S Q, et al. Storm-induced hydrodynamic changes and seabed erosion in the littoral area of Yellow River Delta: A model-guided mechanism study [J]. Continental Shelf Research, 2020, 205: 104171. doi: 10.1016/j.csr.2020.104171

    [37]

    Ji X M, Zhang W. Tidal influence on the discharge distribution over the Pearl river Delta, China [J]. Regional Studies in Marine Science, 2019, 31: 100791. doi: 10.1016/j.rsma.2019.100791

    [38]

    Hood W G. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system [J]. Geomorphology, 2010, 123(1-2): 154-164. doi: 10.1016/j.geomorph.2010.07.007

    [39]

    Han S, Rice S, Tan G, et al. Geomorphic evolution of the Qingshuigou channel of the Yellow River Delta in response to changing water and sediment regimes and human interventions [J]. Earth Surface Processes and Landforms, 2020, 45(10): 2350-2364. doi: 10.1002/esp.4884

    [40]

    凡姚申, 窦身堂, 王万战, 等. 新入海水沙情势下的黄河口沙嘴动态响应[J]. 水科学进展, 2023, 34(1):63-75

    FAN Yaoshen, DOU Shentang, WANG Wanzhan, et al. Dynamic response of the Yellow River estuarine sandspit to new water and sediment regimes [J]. Advances in Water Science, 2023, 34(1): 63-75.

    [41]

    Zhang W, Feng H C, Hoitink A J F, et al. Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta [J]. Estuarine, Coastal and Shelf Science, 2017, 196: 301-314. doi: 10.1016/j.ecss.2017.07.008

    [42]

    王彪, 朱建荣, 李路. 长江河口涨落潮不对称性动力成因分析[J]. 海洋学报, 2011, 33(3):19-27

    WANG Biao, ZHU Jianrong, LI Lu. A study on the dynamics of the asymmetry between flood and ebb in the Changjiang River Estuary [J]. Haiyang Xuebao, 2011, 33(3): 19-27.

    [43]

    乔立新, 张国安, 何青, 等. 长江分汊河口涨、落潮悬沙不对称特征及季节性差异[J]. 海洋学报, 2020, 42(3):107-117

    QIAO Lixin, ZHANG Guoan, HE Qing, et al. Tidal and seasonal asymmetry of suspended sediment concentration in branched channels of the Changjiang River Estuary [J]. Haiyang Xuebao, 2020, 42(3): 107-117.

    [44]

    杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6):13-25

    YANG Yang, CHEN Shenliang, QU Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary [J]. Haiyang Xue-bao, 2021, 43(6): 13-25.

    [45]

    周曾, 陈璐莹, 蒋春海, 等. 河口地貌对潮汐不对称性影响的数值模拟研究[J]. 海洋学报, 2022, 44(7):37-46

    ZHOU Zeng, CHEN Luying, JIANG Chunhai, et al. A numerical simulation study on the response of tidal asymmetry to estuarine morphologies [J]. Haiyang Xuebao, 2022, 44(7): 37-46.

  • 加载中

(17)

计量
  • 文章访问数:  1142
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2023-03-03
修回日期:  2023-04-17
刊出日期:  2024-04-28

目录