2020年特大洪水期间长江水下三角洲沉积物沉积特征

李明宸, 闫粟, 公力维, 王雪晨, 耿润玉, 徐润喆, 周亮, 汪亚平, 沈治雄. 2020年特大洪水期间长江水下三角洲沉积物沉积特征[J]. 海洋地质与第四纪地质, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902
引用本文: 李明宸, 闫粟, 公力维, 王雪晨, 耿润玉, 徐润喆, 周亮, 汪亚平, 沈治雄. 2020年特大洪水期间长江水下三角洲沉积物沉积特征[J]. 海洋地质与第四纪地质, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902
LI Mingchen, YAN Su, GONG Liwei, WANG Xuechen, GENG Runyu, XU Runzhe, ZHOU Liang, WANG Yaping, SHEN Zhixiong. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902
Citation: LI Mingchen, YAN Su, GONG Liwei, WANG Xuechen, GENG Runyu, XU Runzhe, ZHOU Liang, WANG Yaping, SHEN Zhixiong. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902

2020年特大洪水期间长江水下三角洲沉积物沉积特征

  • 基金项目: 国家自然科学基金项目“海南岛南部海岸风暴巨砾沉积揭示的风暴强度”(41706096),“长江流域两千年以来入海水沙通量变化及其对河口-陆架泥质沉积体系发育和演化的影响”(41776048),“海岸风暴频率-强度关系的沉积记录分析”(41530962),“The magnitude and frequency of extreme late Holocene flooding in the middle Yangtze River and their climatic and anthropogenic forcing”(42250610211);上海市教育委员会科研创新项目“长江三角洲蓝图重绘的基础科学问题研究”(2019-01-07-00-05-E00027);江苏省研究生科研与实践创新计划项目“长江口历史水道变迁和特大洪水事件的沉积记录”(KYCX22_2787);江苏省高等学校大学生创新创业训练计划“长江水下三角洲历史特大水文事件沉积的识别”(202110320121Y)
详细信息
    作者简介: 李明宸(1999—),男,硕士研究生,主要从事河口沉积过程方面研究,E-mail:limingchenmy@163.com
    通讯作者: 周亮(1986—),男,副教授,主要从事古洪水水文学和古风暴学研究,E-mail:geozhouliang@126.com
  • 中图分类号: P736

Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020

More Information
  • 大河特大洪水会对河口地区沉积环境产生显著影响,然而当前有关河口三角洲古洪水沉积特征的认识存在较大争议,有待通过现代洪水沉积研究深入揭示河口三角州洪水沉积特征。本文于2020年长江流域性特大洪水发生期间,在长江水下三角洲采集了16根短柱样,在实验室进行了粒度和有机地球化学指标(TOC、TN)分析。结果表明短柱中洪水期间产生的沉积层厚度为3~21 cm,上部洪水沉积层TOC含量平均值为0.59%,TN含量平均值为0.077%,与下部常态沉积层相比均有所增加。洪水层沉积物的平均粒径(13.23 µm)比其下部常态沉积物平均粒径(13.87 µm)略微偏细。代表洪水事件沉积的粒度端元组分EM1和研究区以往钻孔中洪水沉积粒度结果的对比表明,2020年长江口洪水沉积相对底部常态沉积粒度偏细,但比以往研究区钻孔中的洪水沉积粒径偏粗,这与传统古洪水沉积以粗颗粒组分为主的认识存在不同,这应该是流域内大坝建设对沉积物的圈闭作用、中下游河道侵蚀作用和水下三角洲受海洋动力侵蚀作用共同导致。该研究对于河口地区长时间尺度古洪水事件序列的重建以及极端水文事件沉积记录解译具有重要的科学意义。

  • 加载中
  • 图 1  研究区概况及柱状样站位

    Figure 1. 

    图 2  短柱样照片

    Figure 2. 

    图 3  粒度组分及粒度参数垂向变化

    Figure 3. 

    图 4  TOC和TN垂向变化

    Figure 4. 

    图 5  短柱样各粒度端元频率曲线

    Figure 5. 

    图 6  短柱样粒度组分、平均粒径及各端元含量垂向变化

    Figure 6. 

    图 7  长江口水下三角洲钻孔cj0702[18] (a)和YE-1[50] (b)的平均粒径与1880-2020年大通站水沙通量[49,52] (c)比较

    Figure 7. 

  • [1]

    Stanley D J, Warne A G. Worldwide initiation of holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169):228-231. doi: 10.1126/science.265.5169.228

    [2]

    Wright L D. Sediment transport and deposition at river mouths: a synthesis[J]. GSA Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    [3]

    Hirabayashi Y, Mahendran R, Koirala S, et al. Global flood risk under climate change[J]. Nature Climate Change, 2013, 3(9):816-821. doi: 10.1038/nclimate1911

    [4]

    Tessler Z D, Vörösmarty C J, Grossberg M, et al. Profiling risk and sustainability in coastal deltas of the world[J]. Science, 2015, 349(6248):638-643. doi: 10.1126/science.aab3574

    [5]

    Yin H F, Li C G. Human impact on floods and flood disasters on the Yangtze River[J]. Geomorphology, 2001, 41(2-3):105-109. doi: 10.1016/S0169-555X(01)00108-8

    [6]

    Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028

    [7]

    Zhou L, Shi Y, Zhao Y Q, et al. Extreme floods of the Changjiang River over the past two millennia: contributions of climate change and human activity[J]. Marine Geology, 2021, 433:106418. doi: 10.1016/j.margeo.2020.106418

    [8]

    Allison M A, Sheremet A, Goñi M A, et al. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002[J]. Continental Shelf Research, 2005, 25(18):2213-2232. doi: 10.1016/j.csr.2005.08.023

    [9]

    Chen Z Y, Song B P, Wang Z H, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000, 162(2-4):423-441. doi: 10.1016/S0025-3227(99)00064-X

    [10]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023

    [11]

    施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4):289-297 doi: 10.3321/j.issn:1003-5427.2004.04.001

    SHI Yafeng, JIANG Tong, SU Buda, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and the climate changes since 1840[J]. Journal of Lake Sciences, 2004, 16(4):289-297.] doi: 10.3321/j.issn:1003-5427.2004.04.001

    [12]

    Yu F L, Chen Z Y, Ren X Y, et al. Analysis of historical floods on the Yangtze River, China: characteristics and explanations[J]. Geomorphology, 2009, 113(3-4):210-216. doi: 10.1016/j.geomorph.2009.03.008

    [13]

    Jiang T, Zhang Q, Blender R, et al. Yangtze Delta floods and droughts of the last millennium: abrupt changes and long term memory[J]. Theoretical and Applied Climatology, 2005, 82(3-4):131-141. doi: 10.1007/s00704-005-0125-4

    [14]

    李雨凡, 周亮, 于世永, 等. 过去两千年长江干流历史洪水事件的时空变化研究[J]. 地球与环境, 2022, 50(2):241-251

    LI Yufan, ZHOU Liang, YU Shiyong, et al. Temporal and spatial variations of flood events of the Yangtze River over the past 2000 years[J]. Earth and Environment, 2022, 50(2):241-251.]

    [15]

    Zhan W, Yang S Y, Liu X L, et al. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River[J]. Chinese Science Bulletin, 2010, 55(21):2268-2274. doi: 10.1007/s11434-010-3263-8

    [16]

    盛琛, 陈彬, 安郁辉, 等. 长江口泥质区24Z孔沉积物粒度特征及对洪水事件的沉积响应[J]. 海洋科学, 2020, 44(3):74-84 doi: 10.11759/hykx20190513002

    SHENG Chen, CHEN Bin, AN Yuhui, et al. Grain-size characteristics of sediments and sedimentary response to flood events from hole 24Z in muddy areas of the Yangtze Estuary[J]. Marine Sciences, 2020, 44(3):74-84.] doi: 10.11759/hykx20190513002

    [17]

    韦璐, 范代读, 吴伊婧, 等. 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机[J]. 地质通报, 2021, 40(5):707-720

    WEI Lu, FAN Daidu, WU Yijing, et al. High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism[J]. Geological Bulletin of China, 2021, 40(5):707-720.]

    [18]

    Hu G, Li A C, Liu J, et al. High resolution records of flood deposition in the mud area off the Changjiang River mouth during the past century[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(4):909-920. doi: 10.1007/s00343-014-3244-x

    [19]

    Wang M J, Zheng H B, Xie X, et al. A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records[J]. Chinese Science Bulletin, 2011, 56(2):188-195. doi: 10.1007/s11434-010-4212-2

    [20]

    Fan D J, Qi H Y, Sun X X, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from High-resolution biogenic silica and sensitive grain-size records[J]. Continental Shelf Research, 2011, 31(2):129-137. doi: 10.1016/j.csr.2010.12.001

    [21]

    Yang S L, Belkin I M, Belkina A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2

    [22]

    Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1-2):14-20. doi: 10.1016/j.gloplacha.2010.09.006

    [23]

    Yang S L, Milliman J D, Xu K H, et al. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River[J]. Earth-Science Reviews, 2014, 138:469-486. doi: 10.1016/j.earscirev.2014.07.006

    [24]

    Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3):425-435. doi: 10.1016/j.sedgeo.2007.03.018

    [25]

    高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836

    GAO Shu. Grain size trend analysis: principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5):826-836.]

    [26]

    McCave I N. Grain-size trends and transport along beaches: example from eastern England[J]. Marine Geology, 1978, 28(1-2):M43-M51. doi: 10.1016/0025-3227(78)90092-0

    [27]

    张瑞, 汪亚平, 高建华, 等. 长江口泥质区垂向沉积结构及其环境指示意义[J]. 海洋学报, 2008, 30(2):80-91

    ZHANG Rui, WANG Yaping, GAO Jianhua, et al. The vertical sedimentary structure and its implications for environmental evolutions in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(2):80-91.]

    [28]

    Zhang X D, Ji Y, Yang Z S, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2):258-267. doi: 10.1007/s11430-015-5165-8

    [29]

    Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236:106656. doi: 10.1016/j.ecss.2020.106656

    [30]

    张晓东, 翟世奎, 许淑梅. 端元分析模型在长江口邻近海域沉积物粒度数据反演方面的应用[J]. 海洋学报, 2006, 28(4):159-166

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei. The application of grain-size end-member modeling to the shelf near the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2006, 28(4):159-166.]

    [31]

    赵松, 常凤鸣, 李铁刚, 等. 粒度端元法在东海内陆架古环境重建中的应用[J]. 海洋地质与第四纪地质, 2017, 37(3):187-196

    ZHAO Song, CHANG Fengming, LI Tiegang, et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of East China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):187-196.]

    [32]

    Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085

    [33]

    张晓东, 许淑梅, 翟世奎, 等. 东海内陆架沉积气候信息的端元分析模型反演[J]. 海洋地质与第四纪地质, 2006, 26(2):25-32

    ZHANG Xiaodong, XU shumei, ZHAI Shikui, et al. The inversion of climate information from the sediment of inner shelf of East China Sea using end-member model[J]. Marine Geology & Quaternary Geology, 2006, 26(2):25-32.]

    [34]

    朱林, 陈晓红, 郭兴杰, 等. 近十年来长江口北支动力地貌演化过程[J]. 上海国土资源, 2022, 43(2):78-83 doi: 10.3969/j.issn.2095-1329.2022.02.014

    ZHU Lin, CHEN Xiaohong, GUO Xingjie, et al. Dynamic geomorphology evolution of the North Branch of the Yangtze River Estuary in recent ten years[J]. Shanghai Land & Resources, 2022, 43(2):78-83.] doi: 10.3969/j.issn.2095-1329.2022.02.014

    [35]

    Zhan Q, Li M T, Liu X Q, et al. Sedimentary transition of the Yangtze subaqueous delta during the past century: inspiration for delta response to future decline of sediment supply[J]. Marine Geology, 2020, 428:106279. doi: 10.1016/j.margeo.2020.106279

    [36]

    苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16

    SU Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(4):1-16.]

    [37]

    郭志刚, 杨作升, 范德江, 等. 长江口泥质区的季节性沉积效应[J]. 地理学报, 2003, 58(4):591-597 doi: 10.3321/j.issn:0375-5444.2003.04.014

    GUO Zhigang, YANG Zuosheng, FAN Dejiang, et al. Seasonal sedimentary effect on the Changjiang Estuary mud area[J]. Acta Geographica Sinica, 2003, 58(4):591-597.] doi: 10.3321/j.issn:0375-5444.2003.04.014

    [38]

    吴增斌, 郭磊城, 吴雪枫, 等. 2020年特大洪水作用下长江口南槽水沙输移特征[J]. 海洋与湖沼, 2022, 53(2):295-304 doi: 10.11693/hyhz20210800194

    WU Zengbin, GUO Leicheng, WU Xuefeng, et al. A field study of hydrodynamics and sediment transport in the south passage of the Changjiang River estuary during big river flood in July 2020[J]. Oceanologia et Limnologia Sinica, 2022, 53(2):295-304.] doi: 10.11693/hyhz20210800194

    [39]

    Tang R N, Dai Z J, Mei X F, et al. Joint impacts of dams and floodplain on the rainfall-induced extreme flood in the Changjiang (Yangtze) River[J]. Journal of Hydrology, 2023, 627:130428. doi: 10.1016/j.jhydrol.2023.130428

    [40]

    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11):1237-1248. doi: 10.1002/esp.261

    [41]

    Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [42]

    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070

    [43]

    王兆夺, 于东生. 泉州湾表层沉积物粒度特征分析[J]. 应用海洋学学报, 2015, 34(3):326-333 doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    WANG Zhaoduo, YU Dongsheng. Characteristics of grain sizes in surface sediments of Quanzhou Bay[J]. Journal of Applied Oceanography, 2015, 34(3):326-333.] doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    [44]

    薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5):75-89.]

    [45]

    Khan N S, Horton B P, McKee K L, et al. Tracking sedimentation from the historic A. D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA[J]. Geology, 2013, 41(4):391-394. doi: 10.1130/G33805.1

    [46]

    李华勇, 袁俊英, 杨艺萍, 等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质, 2022, 42(2):178-189

    LI Huayong, YUAN Junying, YANG Yiping, et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes[J]. Marine Geology & Quaternary Geology, 2022, 42(2):178-189.]

    [47]

    董坚, 何青, 林建良, 等. 长江口特大洪水浑浊带悬沙粒度分布特征[J]. 海洋通报, 2023, 42(1):48-58

    DONG Jian, HE Qing, LIN Jianliang, et al. The distribution of suspended sediment grain size in Changjiang Estuary turbidity maximum zone during the extreme flood[J]. Marine Science Bulletin, 2023, 42(1):48-58.]

    [48]

    Yang H F, Yang S L, Meng Y, et al. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: a response to river damming[J]. Continental Shelf Research, 2018, 155:45-51. doi: 10.1016/j.csr.2018.01.012

    [49]

    Wang Y H, Dong P, Oguchi T, et al. Long-term (1842–2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China[J]. Continental Shelf Research, 2013, 56:71-81. doi: 10.1016/j.csr.2013.02.006

    [50]

    Zhang R, Li T G, Russell J, et al. High-resolution reconstruction of historical flood events in the Changjiang River catchment based on geochemical and biomarker records[J]. Chemical Geology, 2018, 499:58-70. doi: 10.1016/j.chemgeo.2018.09.003

    [51]

    Mei X F, Dai Z J, Darby S E, et al. Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam[J]. Journal of Hydrology, 2021, 592:125789. doi: 10.1016/j.jhydrol.2020.125789

    [52]

    陆子骞, 张国安, 张卫国, 等. 泥沙来源减少后长江口最大浑浊带变化研究[J]. 泥沙研究, 2022, 47(3):67-72

    LU Ziqian, ZHANG Guoan, ZHANG Weiguo, et al. Processes of the maximum turbidity zone of the Yangtze Estuary under the background of reduced sediment sources[J]. Journal of Sediment Research, 2022, 47(3):67-72.]

    [53]

    陈雅望, 盛辉, 许庆华, 等. 近40年来长江口沉积物粒度变化及其对底床冲淤的响应[J]. 水利水运工程学报, 2021, (5):8-18 doi: 10.12170/20210628002

    CHEN Yawang, SHENG Hui, XU Qinghua, et al. Analysis of sediment grain size change and its response to erosion and deposition pattern within the Yangtze River Estuary for the past 40 years[J]. Hydro-Science and Engineering, 2021, (5):8-18.] doi: 10.12170/20210628002

    [54]

    Wang J, Dai Z J, Mei X F, et al. Tropical cyclones significantly alleviate mega-deltaic erosion induced by high riverine flow[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089065. doi: 10.1029/2020GL089065

  • 加载中

(7)

计量
  • 文章访问数:  39
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-02-29
修回日期:  2024-05-07
录用日期:  2024-05-07
刊出日期:  2025-04-28

目录