Quantitative reconstruction of precipitation changes in the Altai Mountains over the past two thousand years based on pollen analysis
-
摘要:
为预测未来新疆降水趋势,更好地了解区域长时间尺度降水变化特征是当前古环境研究的关注点。本文基于新疆北部88 cm玉什库勒泥炭岩芯孢粉数据和收集附近800 km范围内627个现代表土孢粉,利用现代类比(MAT)方法,定量重建了阿尔泰山过去2 000 a的降水量变化。结果显示,玉什库勒降水量范围为132~300 mm,0—1010 AD为湿润时期(平均为224 mm),1010—2020 AD为变干时期(平均为182 mm),其中最高降水量出现在约750 AD(300 mm),最低降水量出现在约1910 AD(132 mm)。结合阿尔泰山树轮记录的气温数据,过去2 000 a水热模式呈现了暖湿-冷湿-暖干-冷干-暖湿的演变过程,该变化过程受到NAO和太阳辐射变化引起的西风带南移影响。本研究有助于我们更深入地理解阿尔泰山气候变化机制和规律,为未来的气候预测提供重要参考。
Abstract:To predict future precipitation trends in Xinjiang, better understanding the regional precipitation on long time scales is important for the regional paleoenvironmental research. The precipitation changes in the Altai Mountains over the past 2 000 years were quantitatively reconstructed based on palynological data from the Yushekule Peat that collected from an 88 cm long drill core at the south piedmont of the Altai Mountains in north Xinjiang and 627 modern topsoil samples collected in nearby 800 km-ranged areas using a modern analogue technique (MAT) method. Results show that the precipitation in the Yushekule Peat fluctuated between 132 mm and 300 mm, from a wet period (ca. 224 mm) during 0—1010 AD to a dry period (ca. 182 mm) during 1010—2000 AD. The maximum precipitation occurred at 750 AD (ca. 300 mm) and the minimum at 1910 AD (ca. 132 mm). Combined with the temperature data recorded in tree ring in the Altai Mountains, the hydrothermal model in the past 2000 years demonstrated an evolution process from warm-wet, cold-wet, warm-dry, cold-dry, to warm-wet under the influence of the southward shift of westerlies caused by NAO and solar radiation changes. This study contributes to a deeper understanding of the mechanisms and patterns of climate change in the Altai Mountains, and provides an important reference for future climate prediction.
-
Key words:
- pollen and spore /
- quantitative reconstruction /
- precipitation /
- past 2000 years /
- Altai Mountains
-
-
图 2 玉什库勒的深度-年代模型[15]
Figure 2.
图 3 玉什库勒泥炭孢粉图[16]
Figure 3.
实验室代码 深度/cm 测年材料 14C年龄/a BP AA104612 20 植物残体 477±39 AA104613 30 植物残体 811±39 AA104614 40 植物残体 1108 ±39AA104615 50 植物残体 1176 ±40AA104616 60 植物残体 1546 ±41AA104617 70 植物残体 1558 ±58AA104618 80 植物残体 1951±40 表 2 典型对应分析(CCA)与现代孢粉数据的统计和4个气候变量的统计汇总
Table 2. Statistics of canonical correspondence analysis (CCA) and modern pollen data, and four climatic variables for the Yushenkule Peat sequence
气候变量 VIF(含Tann) VIF(不含Tmax) VIF(不含Tmin) VIF(不含Tann) Pann 1.83 1.66 1.66 1.82 Tmin 71037.7 101.55 19.14 Tmax 88268.9 103.79 22.29 Tann 312085.7 107.37 98.34 -
[1] Tarasov P, Dorofeyuk N, ‘Tseva E M. Holocene vegetation and climate changes in Hoton-Nur Basin, northwest Mongolia[J]. Boreas, 2000, 29(2):117-126.
[2] Rudaya N, Tarasov P, Dorofeyuk N et al. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia[J]. Quaternary Science Reviews, 2009, 28(5-6):540-554. doi: 10.1016/j.quascirev.2008.10.013
[3] Chen F H, Chen J H, Huang W et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192:337-354. doi: 10.1016/j.earscirev.2019.03.005
[4] Büntgen U, Myglan V S, Ljungqvist F C et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD[J]. Nature Geoscience, 2016, 9(3):231-236. doi: 10.1038/ngeo2652
[5] Fang K Y, Davi N, Gou X H et al. Spatial drought reconstructions for central High Asia based on tree rings[J]. Climate Dynamics, 2010, 35(6):941-951. doi: 10.1007/s00382-009-0739-9
[6] Aizen V B, Aizen E M, Joswiak D R et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet)[J]. Annals of Glaciology, 2006, 43:49-60. doi: 10.3189/172756406781812078
[7] Li Y, Qiang M R, Zhang J W et al. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China[J]. Quaternary International, 2017, 452:91-101. doi: 10.1016/j.quaint.2016.07.053
[8] Chen F H, Huang X Z, Zhang J W et al. Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China[J]. Science in China Series D: Earth Sciences, 2006, 49(12):1280-1290. doi: 10.1007/s11430-006-2027-4
[9] Liu W G, Liu Z H, An Z S et al. Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China[J]. The Holocene, 2011, 21(3):409-416. doi: 10.1177/0959683610378881
[10] Chen F H, Chen J H, Holmes J et al. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29(7-8):1055-1068. doi: 10.1016/j.quascirev.2010.01.005
[11] Putnam A E, Putnam D E, Andreu-Hayles L et al. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire[J]. Quaternary Science Reviews, 2016, 131:33-50. doi: 10.1016/j.quascirev.2015.10.033
[12] Song M, Zhou A F, Zhang X N et al. Solar imprints on Asian inland moisture fluctuations over the last millennium[J]. The Holocene, 2015, 25(12):1935-1943. doi: 10.1177/0959683615596839
[13] Huang X T, Oberhänsli H, von Suchodoletz H et al. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years[J]. Quaternary Science Reviews, 2011, 30(25-26):3661-3674. doi: 10.1016/j.quascirev.2011.09.011
[14] Willis K S, Beilman D, Booth R K et al. Peatland paleohydrology in the southern West Siberian Lowlands: comparison of multiple testate amoeba transfer functions, sites, and Sphagnum δ13C values[J]. The Holocene, 2015, 25(9):1425-1436. doi: 10.1177/0959683615585833
[15] Yang Y P, Zhang D L, Lan B et al. Peat δ13Ccelluose-signified moisture variations over the past ~2200 years in the southern Altai Mountains, northwestern China[J]. Journal of Asian Earth Sciences, 2019, 174:59-67. doi: 10.1016/j.jseaes.2018.11.019
[16] Zhang D L, Yang Y P, Ran M et al. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Frontiers of Earth Science, 2022, 16(2):513-522. doi: 10.1007/s11707-021-0906-9
[17] 兰波. 过去2 000 a新疆北部的湿度变化及其控制机理[D]. 中国科学院新疆生态与地理研究所博士学位论文, 2017
LAN Bo. Moisture variations in northern Xinjiang and the modulating mechanisms during past 2000 years[D]. Doctor Dissertation of Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, 2017.]
[18] 努尔巴依·阿布都沙力克, 叶勒波拉提·托流汉, 孔琼英. 阿勒泰地区沼泽湿地调查研究[J]. 乌鲁木齐职业大学学报, 2008, 17(1):8-13 doi: 10.3969/j.issn.1009-3397.2008.01.003
Abdusalih N, Tolewhan E, KONG Qiongying. Swamp wetland research in Altay prefecture[J]. Journal of Urumqi Vocational University, 2008, 17(1):8-13.] doi: 10.3969/j.issn.1009-3397.2008.01.003
[19] Tian F, Wang W, Rudaya N et al. Wet mid–late Holocene in central Asia supported prehistoric intercontinental cultural communication: clues from pollen data[J]. CATENA, 2022, 209:105852. doi: 10.1016/j.catena.2021.105852
[20] Huang X Z, Peng W, Rudaya N et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13):6628-6636. doi: 10.1029/2018GL078028
[21] Feng Z D, Sun A Z, Abdusalih N et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. The Holocene, 2017, 27(5):683-693. doi: 10.1177/0959683616670469
[22] Blaauw M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518. doi: 10.1016/j.quageo.2010.01.002
[23] Faegri K, Kaland P E, Krzywinski K. Textbook of Pollen Analysis[M]. 4th ed. Chichester: Wiley, 1989.
[24] 王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995
WANG Fuxiong, QIAN Nanfen, ZHANG Yulong et al. Pollen Flora of China[M]. 2nd ed. Beijing: Science Press, 1995.]
[25] 陈海燕, 徐德宇, 廖梦娜, 等. 中国现代花粉数据集[J]. 植物生态学报, 2021, 45(7):799-808 doi: 10.17521/cjpe.2021.0024
CHEN Haiyan, XU Deyu, LIAO Mengna et al. A modern pollen dataset of China[J]. Chinese Journal of Plant Ecology, 2021, 45(7):799-808.] doi: 10.17521/cjpe.2021.0024
[26] Cao X Y, Tian F, Ding W. Improving the quality of pollen-climate calibration-sets is the primary step for ensuring reliable climate reconstructions[J]. Science Bulletin, 2018, 63(20):1317-1318. doi: 10.1016/j.scib.2018.09.007
[27] Cao X Y, Tian F, Telford R J et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation[J]. Quaternary Science Reviews, 2017, 178:37-53. doi: 10.1016/j.quascirev.2017.10.030
[28] Cao X Y, Tian F, Herzschuh U et al. Human activities have reduced plant diversity in eastern China over the last two millennia[J]. Global Change Biology, 2022, 28(16):4962-4976. doi: 10.1111/gcb.16274
[29] Cao X Y, Tian F, Xu Q H et al. Modern pollen dataset for Asia[EB/OL]. (2022-05-21). https://doi.org/10.11888/Paleoenv.tpdc.272378.
[30] Juggins S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?[J]. Quaternary Science Reviews, 2013, 64:20-32. doi: 10.1016/j.quascirev.2012.12.014
[31] 崔安宁, 吕厚远, 侯居峙, 等. 青藏高原湖泊纹层孢粉记录的过去2 000 a雨季时长和雨季降水时空变化[J]. 中国科学: 地球科学, 2024, 54(3): 808-820
CUI Anning, LV Houyuan, HOU Juzhi et al. Spatiotemporal variation of rainy season span and precipitation recorded by lacustrine laminated pollen in the Tibetan Plateau during the past two millennia[J]. Science China Earth Sciences, 2024, 67(3): 789-801.]
[32] 梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用: 以青藏高原东部全新世温度重建为例[J]. 中国科学: 地球科学, 2020, 50(7): 977-994
LIANG Chen, ZHAO Yan, QIN Feng et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China Earth Sciences, 2020, 63(8): 1144-1160.]
[33] Chen F H, Yu Z C, Yang M L et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4):351-364. doi: 10.1016/j.quascirev.2007.10.017
[34] Büntgen U, Urban O, Krusic P J et al. Recent European drought extremes beyond Common Era background variability[J]. Nature Geoscience, 2021, 14(4):190-196. doi: 10.1038/s41561-021-00698-0
[35] Faust J C, Fabian K, Milzer G et al. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years[J]. Earth and Planetary Science Letters, 2016, 435:84-93. doi: 10.1016/j.jpgl.2015.12.003
[36] Xu G B, Liu X H, Qin D H et al. Drought history inferred from tree ring δ13C and δ18O in the central Tianshan Mountains of China and linkage with the North Atlantic Oscillation[J]. Theoretical and Applied Climatology, 2014, 116(3-4):385-401. doi: 10.1007/s00704-013-0958-1
[37] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19):L19704.
[38] Lan J H, Xu H, Lang Y C et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age[J]. Geology, 2020, 48(4):307-312. doi: 10.1130/G46811.1
[39] Li W, Mu G J, Lin Y C et al. Abrupt climatic shift at ~4000 cal. yr B. P. and late Holocene climatic instability in arid Central Asia: evidence from Lop Nur saline lake in Xinjiang, China[J]. Science of the Total Environment, 2021, 784:147202. doi: 10.1016/j.scitotenv.2021.147202
-