Potential of calcite crystallinity in paleoclimate reconstruction of loess in Northern Central Asia
-
摘要:
黄土碳酸盐矿物是古气候重建的重要载体,而在中亚干旱区其与气候因子的关系尚不明确,尤其是方解石成因的区分及其结晶度的气候指示潜力有待深入挖掘。本文以中亚北部干旱区表土和黄土为研究对象,利用X射线衍射分析了方解石矿物学特征,以方解石(104)晶面衍射峰的峰形参数比(峰高/峰面积,H/A值)表征结晶度,并运用广义加性模型系统评估了气候因子与方解石结晶度的关系。结果表明,次生方解石的H/A值(4.21±0.62)显著低于混合成因方解石(6.25±0.82),H/A值与年蒸散量呈显著负相关,可作为古蒸散强度的潜在代用指标。分析发现年蒸散量与年均温的非线性交互效应可解释H/A值76%的变异。H/A值在寒冷或温暖的温度背景下(0~2 ℃或6~10.5 ℃)与蒸散量密切相关。而在过渡温度区间(2.5~5.5 ℃或11~12 ℃),H/A值随蒸散量的变化存在阈值效应。研究表明方解石结晶度在中亚古气候重建中具有重要的应用潜力,为解析中亚干旱区第四纪环境演变提供了新的矿物学视角和方法支持。
Abstract:In the Loess Plateau of China, carbonate minerals are important proxies for paleoclimate reconstruction. However, relationships between carbonate mineral characteristics and climatic factors remain poorly constrained in the arid region of the Central Asia, concerning particularly the discrimination between different genesis of calcites and their crystallinity as climatic proxies. This study focuses on the climatic significance of calcite crystallinity in topsoils and loess in the arid region of Central Asia, aiming to assess its potential for paleoclimatic reconstruction. A total of 48 topsoils of loess sediments and 6 samples from two loess profiles deposited since the last glacial periods were collected from northern Xinjiang, China, and southern Kazakhstan. X-ray diffraction (XRD) analysis was performed to analyze the mineralogical characteristics of calcite. The crystallinity was quantified using a peak shape parameter (height/area ratio, H/A value) of the calcite (104) diffraction peak. Generalized Additive Models were employed to systematically evaluate the relationship between various climatic factors and calcite crystallinity of topsoils. Results demonstrate that secondary calcite exhibited significantly lower H/A values (4.21±0.62) compared to mixed-origin calcite (6.25±0.82). The H/A values show a significant negative correlation with annual evapotranspiration, suggesting their potential as a proxy of paleo-evapotranspiration intensity. Except for winter, the separate introduction of precipitation and temperature factors in other seasons did not significantly improve the explanatory power of the model.. However, non-linear interactions between annual evapotranspiration and mean annual temperature accounted for 76% of the variance in H/A values. The H/A values were closely related to the evapotranspiration as a single factor in the cold (0~2°C) or warm (6~10.5°C) thermal regimes; however, there was a threshold effect of the H/A value change with the evapotranspiration in the transitional thermal regimes (2.5~5.5°C or 11~12°C). This research provids critical insights into applying calcite crystallinity for paleoclimate reconstruction in the Central Asia, which deepens understanding of the paleoclimate characteristics and offers a novel mineralogical tool for deciphering Quaternary environmental evolution in arid Central Asia.
-
Key words:
- calcite crystallinity /
- topsoil /
- evapotranspiration /
- loess /
- arid Central Asia
-
-
表 1 H/A值与单影响因素的 GAMs 模型结果
Table 1. Results of single-factor Generalized Additive Models (GAMs) for H/A values
模型因子 有效自由度 参考自由度 P 方差解释率/% 调整决定系数R2 年蒸散量 1.00 1.00 < 0.0001 ***59.54 0.59 春季蒸散量 1.00 1.00 < 0.0001 ***43.21 0.42 夏季蒸散量 1.66 2.08 < 0.0001 ***52.54 0.51 秋季蒸散量 2.04 2.57 < 0.0001 ***57.62 0.56 冬季蒸散量 1.97 2.48 0.0061 **24.17 0.21 年降水量 1.00 1.00 0.0037 **16.93 0.15 春季降水量 2.06 2.56 0.0473 *17.21 0.13 夏季降水量 2.92 3.64 0.0003 ***38.85 0.35 秋季降水量 1.40 1.71 0.8082 2.08 −0.01 冬季降水量 2.39 2.92 0.0128 *24.03 0.20 年均温度 3.01 3.74 0.0268 *23.42 0.18 春季温度 5.43 6.54 0.0679 28.21 0.19 夏季温度 1.58 1.82 < 0.0001 ***29.70 0.27 秋季温度 5.85 6.99 0.0458 *31.22 0.21 冬季温度 3.74 4.66 0.4091 13.34 0.06 注:“*”、“**”和“***”分别表示在0.05、0.01和0.001水平下变量是显著的。 表 2 双预测变量广义加性模型
Table 2. Two-predictor generalized additive models
模型 组合及组合模式 调整R2 RMSE AIC 增加项/交互项P值 模型1 年蒸散量 0.59 0.56 86.129 模型2 年蒸散量—冬季蒸散量,可加 0.70 0.44 77.804 0.037* 模型3 年蒸散量—年均温度,交互 0.76 0.37 70.531 <2×10−16 *** -
[1] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985
LIU Tungsheng. Loess and Environment[M]. Beijing: Science Press, 1985.]
[2] 卢演俦. 黄土地层中CaCO3含量变化与更新世气候旋迴[J]. 地质科学, 1981(02):122-131
LU Yanchou. Pleistocene climatic cycles and variation of CaCO3 contents in a loess profile[J]. Scientia Geologica Sinica, 1981(02):122-131.]
[3] 赵景波. 黄土形成与演变模式[J]. 土壤学报, 2002, 39(4):459-466
ZHAO Jingbo. Pattern of loess Formation and evolution[J]. Acta Pedologica Sinica, 2002, 39(4):459-466.]
[4] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240. doi: 10.1016/0012-821X(84)90089-X
[5] Zhang H W, Cai Y J, Tan L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309:1-14. doi: 10.1016/j.sedgeo.2014.05.007
[6] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17):4929-4950. doi: 10.1016/j.gca.2011.06.005
[7] Rinderknecht C J, Hasiuk F J, Oborny S C. Mg zonation and heterogeneity in low-Mg calcite microcrystals of a depositional chalk[J]. Journal of Sedimentary Research, 2021, 91(8):795-811. doi: 10.2110/jsr.2020.173
[8] Zhang R, Zhang H, Spötl C, et al. Dual pathways of aragonite-to-calcite transformation in stalagmites: implications for paleoclimate reconstructions[J]. Geochimica et Cosmochimica Acta, 2024, 378:45-57. doi: 10.1016/j.gca.2024.06.003
[9] Solotchina E P, Sklyarov E V, Solotchin P A, et al. Authigenic carbonate sedimentation in Eravnoe group lakes (western Transbaikalia): response to Holocene climate change[J]. Russian Geology and Geophysics, 2017, 58(11):1390-1400. doi: 10.1016/j.rgg.2017.11.005
[10] Fan J W, Xiao J L, Wen R L, et al. Mineralogy and carbonate geochemistry of the Dali Lake sediments: implications for paleohydrological changes in the East Asian summer monsoon margin during the Holocene[J]. Quaternary International, 2019, 527:103-112. doi: 10.1016/j.quaint.2018.03.019
[11] 梁莲姬, 孙有斌, Beets C J, 等. 黄土中的碳酸盐矿物特征与化学风化[J]. 第四纪研究, 2014, 34(3):645-653 doi: 10.3969/j.issn.1001-7410.2014.03.18
LIANG Lianji, SUN Youbin, Beets C J, et al. Characteristics of carbonate minerals in loess and its implication for chemical weathering[J]. Quaternary Sciences, 2014, 34(3):645-653.] doi: 10.3969/j.issn.1001-7410.2014.03.18
[12] 张文翔, 史正涛, 刘勇, 等. 西风区黄土-古土壤的碳酸盐含量对磁化率影响研究[J]. 地球环境学报, 2014, 5(2):155-162
ZHANG Wenxiang, SHI Zhengtao, LIU Yong, et al. Study on the influence of carbonate content on magnetic susceptibility of Talede loess-paleosol sequences in westerly area of China[J]. Journal of Earth Environment, 2014, 5(2):155-162.]
[13] 孟先强. 中国北方黄土中碳酸盐矿物的来源、分布与古季风变迁[D]. 南京大学博士学位论文, 2018
MENG Xianqiang. The origin and distribution of carbonates in the loess deposits from northern China: implications for palaeomonsoon changes[D]. Doctor Dissertation of Nanjing University, 2018.]
[14] Liu W G, Yang H, Sun Y B, et al. δ13C values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess Plateau[J]. Chemical Geology, 2011, 284(3-4):317-322. doi: 10.1016/j.chemgeo.2011.03.011
[15] Sun Y B, Kutzbach J, An Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142. doi: 10.1016/j.quascirev.2015.03.009
[16] 董吉宝, Eiler J. 黄土高原全新世土壤碳酸盐团簇同位素的温度重建[J]. 第四纪研究, 2024, 44(5):1411-1420
DONG Jibao, Eiler J. Temperature reconstruction using the clumped isotope for the Holocene soil carbonates on the Chinese Loess Plateau[J]. Quaternary Sciences, 2024, 44(5):1411-1420.]
[17] Yang J D, Chen J, Tao X C, et al. Sr isotope ratios of acid-leached loess residues from Luochuan, China: a tracer of continental weathering intensity over the past 2.5 Ma[J]. Geochemical Journal, 2001, 35(6):403-412. doi: 10.2343/geochemj.35.403
[18] Álvarez D, Torres-Guerrero C A, Travé A, et al. Biogenic carbonates (queras) in loess-palaeosol sequences of the Ebro Basin and their potential use as a palaeoenvironmental proxy[J]. CATENA, 2024, 240:107969. doi: 10.1016/j.catena.2024.107969
[19] 曾蒙秀, 宋友桂. 西风区昭苏黄土剖面中碳酸盐矿物组成及其古环境意义辨识[J]. 第四纪研究, 2013, 33(3):424-436
ZENG Mengxiu, SONG Yougui. Carbonate minerals of Zhaosu loess section in westerly area and their paleoenvironmental significance[J]. Quaternary Sciences, 2013, 33(3):424-436.]
[20] Versteegen A. Biotic and abiotic controls on calcium carbonate Formation in soils[D]. Doctor Dissertation of Cranfield University, 2010.
[21] He M, Cai Y J, Zhao X N, et al. Calcite recrystallization and its impact on speleothem geochemistry[J]. Sedimentary Geology, 2024, 470:106725. doi: 10.1016/j.sedgeo.2024.106725
[22] Zhao Y, Huang K J, Guo Y Q, et al. Primary and secondary calcite in Chinese loess distinguished by crystallinity and implications for illuviation depth and East Asian summer monsoon intensity[J/OL]. Journal of Earth Science. https://link.cnki.net/urlid/42.1788.P.20240108.1022.002. (2025-02-24).
[23] Meng X Q, Liu L W, Balsam W, et al. Dolomite abundance in Chinese loess deposits: a new proxy of monsoon precipitation intensity[J]. Geophysical Research Letters, 2015, 42(23):10391-10398.
[24] 隋玉柱. 从彭阳剖面看黄土成壤模式及气候变化[D]. 兰州大学博士学位论文, 2007
SUI Yuzhu. The soil-forming mode and paleoclimatic changes of Pengyang loess section[D]. Doctor Dissertation of Lanzhou University, 2007.]
[25] 周杰, 沈吉. 中国西部环境演变过程研究[M]. 北京: 科学出版社, 2007: 4-5
ZHOU Jie, SHEN Ji. Study on Environmental Evolution in Western China[M]. Beijing: Science Press, 2007: 4-5.]
[26] Li Y, Song Y G, Kaskaoutis D G, et al. Atmospheric dust dynamics in southern Central Asia: Implications for buildup of Tajikistan loess sediments[J]. Atmospheric Research, 2019, 229:74-85. doi: 10.1016/j.atmosres.2019.06.013
[27] Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192:337-354. doi: 10.1016/j.earscirev.2019.03.005
[28] Zhang L C, Qin K Z, Xiao W J. Multiple mineralization events in the eastern Tianshan district, NW China: Isotopic geochronology and geological significance[J]. Journal of Asian Earth Sciences, 2008, 32(2-4):236-246. doi: 10.1016/j.jseaes.2007.10.011
[29] Zhang M Y, Song Y G, Shukurov S, et al. Provenance and fluvial‐aeolian process of Kyzylkum desert: constrained by detrital zircon U–Pb dating[J]. Geophysical Research Letters, 2024, 51(13):e2024GL108951. doi: 10.1029/2024GL108951
[30] Song Y G, Chen X L, Qian L B, et al. Distribution and composition of loess sediments in the Ili Basin, Central Asia[J]. Quaternary International, 2014, 334-335:61-73. doi: 10.1016/j.quaint.2013.12.053
[31] Gessner U, Naeimi V, Klein I, et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia[J]. Global and Planetary Change, 2013, 110:74-87. doi: 10.1016/j.gloplacha.2012.09.007
[32] Yang J D, Chen J, An Z S, et al. Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157(1-2):151-159. doi: 10.1016/S0031-0182(99)00159-5
[33] Sulimai N H, Rani R A, Khusaimi Z, et al. Facile synthesis of CaCO3 and investigation on structural and optical properties of high purity crystalline calcite[J]. Materials Science and Engineering: B, 2019, 243:78-85. doi: 10.1016/j.mseb.2019.03.006
[34] Li Y, Song Y G, Xiao J Y, et al. Precipitation changes during the last glacial Period in the Ili Basin, northern Central Asia, as inferred from the records of loess dolomite[J]. Global and Planetary Change, 2024, 242:104599. doi: 10.1016/j.gloplacha.2024.104599
[35] 曾蒙秀, 宋友桂. 基于麦夸特算法的X射线衍射物相定量分析的影响因素研究[J]. 岩矿测试, 2012, 31(5):798-806
ZENG Mengxiu, SONG Yougui. Study on the influencing factors of the Levenberg-Marquardt algorithm for X-ray diffraction quantitative phase analysis[J]. Rock and Mineral Analysis, 2012, 31(5):798-806.]
[36] Solotchina E P, Sklyarov E V, Solotchin P A, et al. Reconstruction of the Holocene climate based on a carbonate sedimentary record from shallow saline Lake Verkhnee Beloe (western Transbaikalia)[J]. Russian Geology and Geophysics, 2012, 53(12):1351-1365. doi: 10.1016/j.rgg.2012.10.008
[37] Karger D N, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth’s land surface areas[J]. Scientific Data, 2017, 4(1):170122. doi: 10.1038/sdata.2017.122
[38] Rienecker M M, Suarez M J, Gelaro R, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of Climate, 2011, 24(14):3624-3648. doi: 10.1175/JCLI-D-11-00015.1
[39] Zheng C L, Jia L, Hu G C. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations[J]. Journal of Hydrology, 2022, 613:128444. doi: 10.1016/j.jhydrol.2022.128444
[40] 沈永平. 1879-2003年(部分年份)中亚地区哈萨克斯坦逐月平均降水量数据[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/e7692dfc-645f-4fe9-82c1-d106ff3ab829
SHEN Yongping. Monthly average precipitation data of Kazakhstan in Central Asia from 1879 to 2003 (partial years)[DB/OL]. National Cryosphere Desert Data Center, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/e7692dfc-645f-4fe9-82c1-d106ff3ab829.]
[41] 沈永平. 1848-2003年(部分年份)中亚地区哈萨克斯坦逐月平均气温数据[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/6aab912b-5809-4fab-a381-e4dd9887c4c8
SHEN Yongping. Monthly average temperature data of Kazakhstan in Central Asia from 1848 to 2003 (partial years)[DB/OL]. National Cryosphere Desert Data Center, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/6aab912b-5809-4fab-a381-e4dd9887c4c8.]
[42] Hastie T J. Generalized Additive Models[M]. New York: Routledge, 2017.
[43] 贺祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017, 38(1):22-32
HE Xiang, LIN Zhenshan. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1):22-32.]
[44] Wood S N. Generalized Additive Models: An Introduction with R[M]. 2nd ed. New York: Chapman and Hall/CRC, 2017.
[45] Dziak J J, Coffman D L, Lanza S T, et al. Sensitivity and specificity of information criteria[J]. Briefings in Bioinformatics, 2020, 21(2):553-565. doi: 10.1093/bib/bbz016
[46] 盛雪芬. 黄土碳酸盐的环境地球化学研究[D]. 南京大学博士学位论文, 2004
SHENG Xuefeng. Environmental geochemistry of loess carbonates[D]. Doctor Dissertation of Nanjing University, 2004.]
[47] Lu J S, Li Q H, Song W F, et al. The influence of crystal modifiers on the crystallinity, particle morphology and brightness of precipitated calcite powders hydrothermally prepared from black marble waste[J]. Powder Technology, 2020, 373:535-542. doi: 10.1016/j.powtec.2020.07.002
[48] Jaillard B, Guyon A, Maurin A F. Structure and composition of calcified roots, and their identification in calcareous soils[J]. Geoderma, 1991, 50(3):197-210. doi: 10.1016/0016-7061(91)90034-Q
[49] Barta G. Secondary carbonates in loess-paleosoil sequences: a general review[J]. Open Geosciences, 2011, 3(2):129-146. doi: 10.2478/s13533-011-0013-7
[50] Bolan N, Srivastava P, Rao C S, et al. Distribution, characteristics and management of calcareous soils[J]. Advances in Agronomy, 2023, 182:81-130.
[51] Yu W J, Weintraub S R, Hall S J. Climatic and geochemical controls on soil carbon at the continental scale: interactions and thresholds[J]. Global Biogeochemical Cycles, 2021, 35(3):e2020GB006781. doi: 10.1029/2020GB006781
[52] Zhang J P, Zhi M M, Zhang Y. Combined generalized additive model and random forest to evaluate the influence of environmental factors on phytoplankton biomass in a large eutrophic lake[J]. Ecological Indicators, 2021, 130:108082. doi: 10.1016/j.ecolind.2021.108082
[53] Ye Z X, Hong S, He C, et al. Evaluation of different factors on metal leaching from nickel tailings using generalized additive model (GAM)[J]. Ecotoxicology and Environmental Safety, 2022, 236:113488. doi: 10.1016/j.ecoenv.2022.113488
[54] Liu H X, Jiang M D, Yu Z C, et al. Contrasting north-south pattern in Holocene lacustrine carbon accumulation in China: summer monsoon dynamics and human disturbance[J]. Quaternary Science Reviews, 2024, 324:108465. doi: 10.1016/j.quascirev.2023.108465
[55] 代鹏超, 牛苏娟, 毋兆鹏, 等. 新疆精河流域实际蒸散发时空变化特征[J]. 生态与农村环境学报, 2017, 33(7):600-606
DAI Pengchao, NIU Sujuan, WU Zhaopeng, et al. Temporal and spatial characteristics of actual evapotranspiration in Jinghe watershed, Xinjiang[J]. Journal of Ecology and Rural Environment, 2017, 33(7):600-606.]
[56] 郑倩倩, 代鹏超, 张金燕, 等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区地理, 2021, 37(6): 1378-1387
ZHENG Qianqian, DAI Pengchao, ZHANG Jinyan, et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research, 2020, 37(6): 1378-1387.]
[57] 阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 等. 基于MODIS数据的新疆地表蒸散量时空分布及变化趋势分析[J]. 地理研究, 2017, 36(7):1245-1256
ADILAI Wufu, YUSUFUJIANG Rusuli, REYILAI Kadeer, et al. Spatio-temporal distribution and evolution trend of evapotranspiration in Xinjiang based on MOD16 data[J]. Geographical Research, 2017, 36(7):1245-1256.]
[58] Farooq I, Shah A R, Sahana M, et al. Assessment of drought conditions over different climate zones of Kazakhstan using standardised precipitation evapotranspiration index[J]. Earth Systems and Environment, 2023, 7(1):283-296. doi: 10.1007/s41748-022-00314-0
[59] Wang S J, Zhang M J, Che Y J, et al. Contribution of recycled moisture to precipitation in oases of arid central Asia: a stable isotope approach[J]. Water Resources Research, 2016, 52(4):3246-3257. doi: 10.1002/2015WR018135
[60] Bower C A, Wilcox L V. Precipitation and solution of calcium carbonate in irrigation operations[J]. Soil Science Society of America Journal, 1965, 29(1):93-94. doi: 10.2136/sssaj1965.03615995002900010028x
[61] Bellanca A, Neri R. Dissolution and precipitation of gypsum and carbonate minerals in soils on evaporite deposits, central Sicily - isotope geochemistry and microfabric analysis[J]. Geoderma, 1993, 59(1-4):263-277. doi: 10.1016/0016-7061(93)90073-T
[62] Li Q L, Shi G S, Shangguan W, et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning[J]. Earth System Science Data, 2022, 14(12):5267-5286. doi: 10.5194/essd-14-5267-2022
[63] Oberhänsli H, Novotná K, Píšková A, et al. Variability in precipitation, temperature and river runoff in W Central Asia during the past~ 2000yrs[J]. Global and Planetary Change, 2011, 76(1-2):95-104. doi: 10.1016/j.gloplacha.2010.12.008
[64] 赵彤, 蒋跃利, 闫浩, 等. 黄土丘陵区不同坡向对土壤微生物生物量和可溶性有机碳的影响[J]. 环境科学, 2013, 34(8):3223-3230
ZHAO Tong, JIANG Yueli, YAN Hao, et al. Effects of different aspects on soil microbial biomass and dissolved organic carbon of the loess hilly area[J]. Environmental Science, 2013, 34(8):3223-3230.]
[65] 荣辉, 钱春香, 李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报, 2013, 41(3):314-319 doi: 10.7521/j.issn.04545648.2013.03.07
RONG Hui, QIAN Chunxiang, LI Longzhi, et al. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3):314-319.] doi: 10.7521/j.issn.04545648.2013.03.07
[66] Fuchs L, Zhou B, Magill C, et al. Multiproxy records of temperature, precipitation and vegetation on the central Chinese Loess Plateau over the past 200, 000 years[J]. Quaternary Science Reviews, 2022, 288:107579. doi: 10.1016/j.quascirev.2022.107579
[67] Lu H X, Liu W G, Yang H, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1):1958. doi: 10.1038/s41467-019-09978-1
[68] Hua L J, Zhao T B, Zhong L H. Future changes in drought over Central Asia under CMIP6 forcing scenarios[J]. Journal of Hydrology: Regional Studies, 2022, 43:101191. doi: 10.1016/j.ejrh.2022.101191
-