Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes
-
摘要:
由于太平洋板块俯冲到北美板块之下,阿拉斯加俯冲带弧前地区频繁发生板间逆冲型大地震。大地震的空间分布并不均匀,且孕震机制仍不清晰。为了厘清阿拉斯加俯冲带弧前板间逆冲型大地震的成因机制,本研究收集了2018—2019年间布设在阿拉斯加地区的268台地震台站记录到的远震波形数据,从中测量了25~100 s周期的远震瑞利波振幅和相位数据。通过地震层析成像方法,建立了一个新的阿拉斯加俯冲带上地幔三维剪切波速度模型。成像结果显示,在阿拉斯加弧前之下,存在着沿海沟方向的横向构造变化。在弧前板间逆冲型大地震震源区之下,俯冲板片常呈现为显著的高速异常体,并被具有明显低速异常的板下地幔所撑起。该特征表明,在板间逆冲型大地震震源区之下发生了软流圈的聚集,这可能增加了俯冲板片的浮力,从而加强了俯冲板片与上覆板块间的耦合,从而在一定程度上控制了弧前板间逆冲型大地震的形成。
Abstract:The subduction of the Pacific Plate beneath the North American Plate causes frequent occurrence of interplate megathrust earthquakes in the Alaska forearc. However, the distribution of megathrust earthquakes is not uniform and their causal mechanism is still not clear. To clarify this issue, we collected teleseismic waveform data recorded at 268 seismic stations deployed in Alaska during 2018-2019, and measure the teleseismic fundamental mode Rayleigh-wave amplitude and phase data at periods of 25~100 s. We applied a seismic tomographic method to determine a new three-dimensional shear-wave velocity model of the upper mantle beneath Alaska. Our tomographic results revealed lateral structural variations along the trench beneath the Alaska forearc. Beneath the source zones of megathrust earthquakes, the subducting slab exhibits an obvious high-velocity anomaly and is supported by a subslab with obvious low-velocity anomalies. These features suggest possible convergence of the asthenosphere beneath the source zones of the megathrust earthquakes, which may strengthen the coupling between the subducting slab and the overlying plate by increasing the slab buoyancy, and thus affect the generation of the megathrust earthquakes.
-
Key words:
- seismic tomography /
- megathrust earthquake /
- shear wave /
- Rayleigh wave /
- Alaska subduction zone
-
-
[1] Kanamori H. The Alaska Earthquake of 1964: radiation of long-period surface waves and source mechanism[J]. Journal of Geophysical Research, 1970, 75(26):5029-5040. doi: 10.1029/JB075i026p05029
[2] Ye L L, Bai Y F, Si D J, et al. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2021JB023676. doi: 10.1029/2021JB023676
[3] Freymueller J T, Suleimani E N, Nicolsky D J. Constraints on the slip distribution of the 1938 Mw 8.3 Alaska Peninsula earthquake from tsunami modeling[J]. Geophysical Research Letters, 2021, 48(9):e2021GL092812. doi: 10.1029/2021GL092812
[4] Pelayo A M, Wiens D A. Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B11):15321-15337. doi: 10.1029/92JB01305
[5] Johnson J M, Satake K, Holdahl S R, et al. The 1964 Prince William Sound earthquake: joint inversion of tsunami and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B1):523-532. doi: 10.1029/95JB02806
[6] He B, Wei X Z, Wei M, et al. A shallow slow slip event in 2018 in the Semidi segment of the Alaska subduction zone detected by machine learning[J]. Earth and Planetary Science Letters, 2023, 612:118154. doi: 10.1016/j.jpgl.2023.118154
[7] Ohta Y, Freymueller J, Hreinsdóttir S, et al. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth and Planetary Science Letters, 2006, 247(1-2):108-116. doi: 10.1016/j.jpgl.2006.05.013
[8] Wei M, McGuire J J, Richardson E. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophysical Research Letters, 2012, 39(15):L15309. doi: 10.1029/2012GL052351
[9] Fu Y N, Freymueller J T. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth and Planetary Science Letters, 2013, 375:303-311. doi: 10.1016/j.jpgl.2013.05.049
[10] Fu Y N, Liu Z, Freymueller J T. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2450-2461. doi: 10.1002/2015GC005904
[11] Okada Y, Nishimura T. Systematic detection of short-term slow slip events in south-central Alaska[J]. Geophysical Research Letters, 2023, 50(17):e2023GL104901. doi: 10.1029/2023GL104901
[12] Brown J R, Prejean S G, Beroza G C, et al. Deep low-frequency earthquakes in tectonic tremor along the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3):1079-1090. doi: 10.1029/2012JB009459
[13] Wech A G. Extending Alaska’s plate boundary: tectonic tremor generated by Yakutat subduction[J]. Geology, 2016, 44(7):587-590. doi: 10.1130/G37817.1
[14] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. doi: 10.1038/34097
[15] Lay T, Kanamori H, Ammon C J, et al. Depth-varying rupture properties of subduction zone megathrust faults[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04311. doi: 10.1029/2011JB009133
[16] Obara K, Kato A. Connecting slow earthquakes to huge earthquakes[J]. Science, 2016, 353(6296):253-257. doi: 10.1126/science.aaf1512
[17] Tape C, Lomax A. Aftershock regions of Aleutian-Alaska megathrust earthquakes, 1938-2021[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2022JB024336. doi: 10.1029/2022JB024336
[18] Zweck C, Freymueller J T, Cohen S C. Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ECV 1-1-ECV 1-11, doi: 10.1029/2001JB000409.
[19] Li S S, Freymueller J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophysical Research Letters, 2018, 45(8):3453-3460. doi: 10.1002/2017GL076761
[20] Drooff C, Freymueller J T. New constraints on slip deficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements[J]. Geophysical Research Letters, 2021, 48(4):e2020GL091787. doi: 10.1029/2020GL091787
[21] Elliott J L, Grapenthin R, Parameswaran R M, et al. Cascading rupture of a megathrust[J]. Science Advances, 2022, 8:eabm4131. doi: 10.1126/sciadv.abm4131
[22] Zhao B, Bürgmann R, Wang D Z, et al. Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone[J]. Nature Communications, 2022, 13(1):3098. doi: 10.1038/s41467-022-30883-7
[23] Brooks B A, Goldberg D, DeSanto J, et al. Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy[J]. Science Advances, 2023, 9(17):eadf9299. doi: 10.1126/sciadv.adf9299
[24] Liu C L, Bai Y F, Lay T, et al. Megathrust complexity and the up-dip extent of slip during the 2021 Chignik, Alaska Peninsula earthquake[J]. Tectonophysics, 2023, 854:229808. doi: 10.1016/j.tecto.2023.229808
[25] Ichinose G, Somerville P, Thio H K, et al. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7):B07306. doi: 10.1029/2006JB004728
[26] Barcheck G, Abers G A, Adams A N, et al. The Alaska amphibious community seismic experiment[J]. Seismological Research Letters, 2020, 91(6):3054-3063. doi: 10.1785/0220200189
[27] Liu X, Zhao D P. Seismic evidence for a plume-modified oceanic lithosphere–asthenosphere system beneath Cape Verde[J]. Geophysical Journal International, 2021, 225(2):872-886. doi: 10.1093/gji/ggab012
[28] Forsyth D W, Li A B. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[M]//Levander A, Nolet G. Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, 2005: 81-97.
[29] Yang Y J, Forsyth D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 2006, 166(3):1148-1160. doi: 10.1111/j.1365-246X.2006.02972.x
[30] Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13):19909-19928. doi: 10.1029/92JB00603
[31] Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982, 8(1):43-71. doi: 10.1145/355984.355989
[32] Kreemer C, Blewitt G, Klein E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10):3849-3889. doi: 10.1002/2014GC005407
[33] Saito M. DISPER80: a subroutine package for the calculation of seismic normal mode solutions [M]//Doornbos D. Seismological Algorithms: Computational Methods and Computer Programs. New York: Academic Press, 1988: 293-319.
[34] Birch F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7):2199-2224. doi: 10.1029/JZ066i007p02199
[35] Wang X, Liu X, Zhao D P, et al. Oceanic plate subduction and continental extrusion in Sumatra: insight from S-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 580:117388. doi: 10.1016/j.jpgl.2022.117388
[36] Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1):108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x
[37] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. doi: 10.1126/science.aat4723
[38] Gou T, Zhao D P, Huang Z C, et al. Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2):1700-1724. doi: 10.1029/2018JB016639
[39] Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0—A 1-global model of Earth's crust[J]. Geophysical Research Abstracts, 2013, 15:EGU2013-2658.
[40] Engdahl E R, Di Giacomo D, Sakarya B, et al. ISC-EHB 1964-2016, an improved data set for studies of earth structure and global seismicity[J]. Earth and Space Science, 2020, 7(1):e2019EA000897. doi: 10.1029/2019EA000897
[41] Zhao D P, Christensen D, Pulpan H. Tomographic imaging of the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4):6487-6504. doi: 10.1029/95JB00046
[42] Eberhart-Phillips D, Christensen D H, Brocher T M, et al. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11):B11303. doi: 10.1029/2005JB004240
[43] You T, Zhao D P. Seismic anisotropy and heterogeneity in the Alaska subduction zone[J]. Geophysical Journal International, 2012, 190(1):629-649. doi: 10.1111/j.1365-246X.2012.05512.x
[44] Gou T, Zhao D P, Huang Z C, et al. Structural heterogeneity in source zones of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3):e2019GC008812. doi: 10.1029/2019GC008812
[45] Gou T, Xia S H, Huang Z C, et al. Structural heterogeneity of the Alaska-Aleutian Forearc: implications for interplate coupling and seismogenic behaviors[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024621. doi: 10.1029/2022JB024621
[46] Feng L, Liu C M, Ritzwoller M H. Azimuthal anisotropy of the crust and uppermost mantle beneath Alaska[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12):e2020JB020076. doi: 10.1029/2020JB020076
[47] Li Z S, Wiens D A, Shen W S, et al. Along-strike variations of Alaska subduction zone structure and hydration determined from amphibious seismic data[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3):e2023JB027800. doi: 10.1029/2023JB027800
[48] Wang F, Wei S S, Drooff C, et al. Fluids control along-strike variations in the Alaska megathrust slip[J]. Earth and Planetary Science Letters, 2024, 633:118655. doi: 10.1016/j.jpgl.2024.118655
[49] Liu C M, Zhang S N, Sheehan A F, et al. Surface wave isotropic and azimuthally anisotropic dispersion across Alaska and the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024885. doi: 10.1029/2022JB024885
[50] Zhao D P, Huang Z C, Umino N, et al. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0)[J]. Geophysical Research Letters, 2011, 38(17):L17308. doi: 10.1029/2011gl048408
[51] Moreno M, Haberland C, Oncken O, et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake[J]. Nature Geoscience, 2014, 7(4):292-296. doi: 10.1038/ngeo2102
[52] Bassett D, Sandwell D T, Fialko Y, et al. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake[J]. Nature, 2016, 531(7592):92-96. doi: 10.1038/nature16945
[53] Steckler M S, Mondal D R, Akhter S H, et al. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges[J]. Nature Geoscience, 2016, 9(8):615-618. doi: 10.1038/ngeo2760
[54] Liu X, Zhao D P. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Science Advances, 2018, 4(6):eaat4396. doi: 10.1126/sciadv.aat4396
[55] Hua Y Y, Zhao D P, Toyokuni G, et al. Tomography of the source zone of the great 2011 Tohoku earthquake[J]. Nature Communications, 2020, 11(1):1163. doi: 10.1038/s41467-020-14745-8
[56] Cordell D, Naif S, Evans R, et al. Forearc seismogenesis in a weakly coupled subduction zone influenced by slab mantle fluids[J]. Nature Geoscience, 2023, 16(9):822-827. doi: 10.1038/s41561-023-01260-w
[57] Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252. doi: 10.1016/0031-9201(80)90117-X
[58] Nishikawa T, Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7(12):904-908. doi: 10.1038/ngeo2279
[59] Hawley W B, Allen R M, Richards M A. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate[J]. Science, 2016, 353(6306):1406-1408. doi: 10.1126/science.aad8104
[60] Zhao D P, Hua Y Y. Anisotropic tomography of the Cascadia subduction zone[J]. Physics of the Earth and Planetary Interiors, 2021, 318:106767. doi: 10.1016/j.pepi.2021.106767
[61] Bodmer M, Toomey D R, Hooft E E E, et al. Buoyant asthenosphere beneath Cascadia influences megathrust segmentation[J]. Geophysical Research Letters, 2018, 45(14):6954-6962. doi: 10.1029/2018GL078700
[62] Bodmer M, Toomey D R, Roering J J, et al. Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc[J]. Earth and Planetary Science Letters, 2020, 531:115965. doi: 10.1016/j.jpgl.2019.115965
[63] Fan J K, Zhao D P. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14(5):349-353. doi: 10.1038/s41561-021-00728-x
[64] Chaytor J D, Keller R A, Duncan R A, et al. Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09016. doi: 10.1029/2007GC001712
-