阿拉斯加俯冲带构造不均匀性及其对板间逆冲型大地震的影响

王超平, 刘鑫, 赵大鹏, 郭玲莉, 苟涛. 阿拉斯加俯冲带构造不均匀性及其对板间逆冲型大地震的影响[J]. 海洋地质与第四纪地质, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901
引用本文: 王超平, 刘鑫, 赵大鹏, 郭玲莉, 苟涛. 阿拉斯加俯冲带构造不均匀性及其对板间逆冲型大地震的影响[J]. 海洋地质与第四纪地质, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901
WANG Chaoping, LIU Xin, ZHAO Dapeng, GUO Lingli, GOU Tao. Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901
Citation: WANG Chaoping, LIU Xin, ZHAO Dapeng, GUO Lingli, GOU Tao. Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 96-108. doi: 10.16562/j.cnki.0256-1492.2024041901

阿拉斯加俯冲带构造不均匀性及其对板间逆冲型大地震的影响

  • 基金项目: 国家自然科学基金项目“东北日本俯冲带弧前深部构造特征及其对板间逆冲型大地震的影响”(41972211);“东南亚环形俯冲系统与西太平洋间深部通道(南纬0°~3°)各向异性和地幔交互机制研究”(42106071);日本科学促进协会项目(19H01996)
详细信息
    作者简介: 王超平(1997—),男,硕士研究生,从事地球深部构造研究,E-mail:wangchaoping@stu.ouc.edu.cn
    通讯作者: 刘鑫(1985—),男,副教授,从事地球深部构造及演化研究,E-mail:liuxin@ouc.edu.cn
  • 中图分类号: P736

Structural heterogeneity in the Alaska subduction zone and its influence on interplate megathrust earthquakes

More Information
  • 由于太平洋板块俯冲到北美板块之下,阿拉斯加俯冲带弧前地区频繁发生板间逆冲型大地震。大地震的空间分布并不均匀,且孕震机制仍不清晰。为了厘清阿拉斯加俯冲带弧前板间逆冲型大地震的成因机制,本研究收集了2018—2019年间布设在阿拉斯加地区的268台地震台站记录到的远震波形数据,从中测量了25~100 s周期的远震瑞利波振幅和相位数据。通过地震层析成像方法,建立了一个新的阿拉斯加俯冲带上地幔三维剪切波速度模型。成像结果显示,在阿拉斯加弧前之下,存在着沿海沟方向的横向构造变化。在弧前板间逆冲型大地震震源区之下,俯冲板片常呈现为显著的高速异常体,并被具有明显低速异常的板下地幔所撑起。该特征表明,在板间逆冲型大地震震源区之下发生了软流圈的聚集,这可能增加了俯冲板片的浮力,从而加强了俯冲板片与上覆板块间的耦合,从而在一定程度上控制了弧前板间逆冲型大地震的形成。

  • 加载中
  • 图 1  本研究使用的地震台站和远震事件分布图

    Figure 1. 

    图 2  瑞利波数据测量示例图

    Figure 2. 

    图 3  阿拉斯加地区瑞利波平均相速度频散曲线

    Figure 3. 

    图 4  瑞利波相速度层析成像中涉及的参数

    Figure 4. 

    图 5  阿拉斯加地区六个周期的瑞利波相速度层析成像平面图

    Figure 5. 

    图 6  剪切波速度层析成像中涉及的参数

    Figure 6. 

    图 7  阿拉斯加地区不同深度剪切波速度层析成像平面图

    Figure 7. 

    图 8  阿拉斯加地区剪切波速度层析成像剖面图

    Figure 8. 

    图 9  阿拉斯加地区恢复分辨率测试结果图

    Figure 9. 

    图 10  阿拉斯加弧前俯冲太平洋岩石圈-软流圈系统构造特征

    Figure 10. 

    图 11  棋盘格分辨率测试结果

    Figure 11. 

    图 12  阿拉斯加弧前俯冲太平洋岩石圈-软流圈系统构造特征恢复分辨率测试

    Figure 12. 

  • [1]

    Kanamori H. The Alaska Earthquake of 1964: radiation of long-period surface waves and source mechanism[J]. Journal of Geophysical Research, 1970, 75(26):5029-5040. doi: 10.1029/JB075i026p05029

    [2]

    Ye L L, Bai Y F, Si D J, et al. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2021JB023676. doi: 10.1029/2021JB023676

    [3]

    Freymueller J T, Suleimani E N, Nicolsky D J. Constraints on the slip distribution of the 1938 Mw 8.3 Alaska Peninsula earthquake from tsunami modeling[J]. Geophysical Research Letters, 2021, 48(9):e2021GL092812. doi: 10.1029/2021GL092812

    [4]

    Pelayo A M, Wiens D A. Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B11):15321-15337. doi: 10.1029/92JB01305

    [5]

    Johnson J M, Satake K, Holdahl S R, et al. The 1964 Prince William Sound earthquake: joint inversion of tsunami and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B1):523-532. doi: 10.1029/95JB02806

    [6]

    He B, Wei X Z, Wei M, et al. A shallow slow slip event in 2018 in the Semidi segment of the Alaska subduction zone detected by machine learning[J]. Earth and Planetary Science Letters, 2023, 612:118154. doi: 10.1016/j.jpgl.2023.118154

    [7]

    Ohta Y, Freymueller J, Hreinsdóttir S, et al. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth and Planetary Science Letters, 2006, 247(1-2):108-116. doi: 10.1016/j.jpgl.2006.05.013

    [8]

    Wei M, McGuire J J, Richardson E. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophysical Research Letters, 2012, 39(15):L15309. doi: 10.1029/2012GL052351

    [9]

    Fu Y N, Freymueller J T. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth and Planetary Science Letters, 2013, 375:303-311. doi: 10.1016/j.jpgl.2013.05.049

    [10]

    Fu Y N, Liu Z, Freymueller J T. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2450-2461. doi: 10.1002/2015GC005904

    [11]

    Okada Y, Nishimura T. Systematic detection of short-term slow slip events in south-central Alaska[J]. Geophysical Research Letters, 2023, 50(17):e2023GL104901. doi: 10.1029/2023GL104901

    [12]

    Brown J R, Prejean S G, Beroza G C, et al. Deep low-frequency earthquakes in tectonic tremor along the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3):1079-1090. doi: 10.1029/2012JB009459

    [13]

    Wech A G. Extending Alaska’s plate boundary: tectonic tremor generated by Yakutat subduction[J]. Geology, 2016, 44(7):587-590. doi: 10.1130/G37817.1

    [14]

    Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. doi: 10.1038/34097

    [15]

    Lay T, Kanamori H, Ammon C J, et al. Depth-varying rupture properties of subduction zone megathrust faults[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04311. doi: 10.1029/2011JB009133

    [16]

    Obara K, Kato A. Connecting slow earthquakes to huge earthquakes[J]. Science, 2016, 353(6296):253-257. doi: 10.1126/science.aaf1512

    [17]

    Tape C, Lomax A. Aftershock regions of Aleutian-Alaska megathrust earthquakes, 1938-2021[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7):e2022JB024336. doi: 10.1029/2022JB024336

    [18]

    Zweck C, Freymueller J T, Cohen S C. Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ECV 1-1-ECV 1-11, doi: 10.1029/2001JB000409.

    [19]

    Li S S, Freymueller J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophysical Research Letters, 2018, 45(8):3453-3460. doi: 10.1002/2017GL076761

    [20]

    Drooff C, Freymueller J T. New constraints on slip deficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements[J]. Geophysical Research Letters, 2021, 48(4):e2020GL091787. doi: 10.1029/2020GL091787

    [21]

    Elliott J L, Grapenthin R, Parameswaran R M, et al. Cascading rupture of a megathrust[J]. Science Advances, 2022, 8:eabm4131. doi: 10.1126/sciadv.abm4131

    [22]

    Zhao B, Bürgmann R, Wang D Z, et al. Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone[J]. Nature Communications, 2022, 13(1):3098. doi: 10.1038/s41467-022-30883-7

    [23]

    Brooks B A, Goldberg D, DeSanto J, et al. Rapid shallow megathrust afterslip from the 2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy[J]. Science Advances, 2023, 9(17):eadf9299. doi: 10.1126/sciadv.adf9299

    [24]

    Liu C L, Bai Y F, Lay T, et al. Megathrust complexity and the up-dip extent of slip during the 2021 Chignik, Alaska Peninsula earthquake[J]. Tectonophysics, 2023, 854:229808. doi: 10.1016/j.tecto.2023.229808

    [25]

    Ichinose G, Somerville P, Thio H K, et al. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7):B07306. doi: 10.1029/2006JB004728

    [26]

    Barcheck G, Abers G A, Adams A N, et al. The Alaska amphibious community seismic experiment[J]. Seismological Research Letters, 2020, 91(6):3054-3063. doi: 10.1785/0220200189

    [27]

    Liu X, Zhao D P. Seismic evidence for a plume-modified oceanic lithosphere–asthenosphere system beneath Cape Verde[J]. Geophysical Journal International, 2021, 225(2):872-886. doi: 10.1093/gji/ggab012

    [28]

    Forsyth D W, Li A B. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[M]//Levander A, Nolet G. Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, 2005: 81-97.

    [29]

    Yang Y J, Forsyth D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 2006, 166(3):1148-1160. doi: 10.1111/j.1365-246X.2006.02972.x

    [30]

    Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13):19909-19928. doi: 10.1029/92JB00603

    [31]

    Paige C C, Saunders M A. LSQR: an algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982, 8(1):43-71. doi: 10.1145/355984.355989

    [32]

    Kreemer C, Blewitt G, Klein E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10):3849-3889. doi: 10.1002/2014GC005407

    [33]

    Saito M. DISPER80: a subroutine package for the calculation of seismic normal mode solutions [M]//Doornbos D. Seismological Algorithms: Computational Methods and Computer Programs. New York: Academic Press, 1988: 293-319.

    [34]

    Birch F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7):2199-2224. doi: 10.1029/JZ066i007p02199

    [35]

    Wang X, Liu X, Zhao D P, et al. Oceanic plate subduction and continental extrusion in Sumatra: insight from S-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 580:117388. doi: 10.1016/j.jpgl.2022.117388

    [36]

    Kennett B L N, Engdahl E R, Buland R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1):108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x

    [37]

    Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. doi: 10.1126/science.aat4723

    [38]

    Gou T, Zhao D P, Huang Z C, et al. Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2):1700-1724. doi: 10.1029/2018JB016639

    [39]

    Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0—A 1-global model of Earth's crust[J]. Geophysical Research Abstracts, 2013, 15:EGU2013-2658.

    [40]

    Engdahl E R, Di Giacomo D, Sakarya B, et al. ISC-EHB 1964-2016, an improved data set for studies of earth structure and global seismicity[J]. Earth and Space Science, 2020, 7(1):e2019EA000897. doi: 10.1029/2019EA000897

    [41]

    Zhao D P, Christensen D, Pulpan H. Tomographic imaging of the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4):6487-6504. doi: 10.1029/95JB00046

    [42]

    Eberhart-Phillips D, Christensen D H, Brocher T M, et al. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11):B11303. doi: 10.1029/2005JB004240

    [43]

    You T, Zhao D P. Seismic anisotropy and heterogeneity in the Alaska subduction zone[J]. Geophysical Journal International, 2012, 190(1):629-649. doi: 10.1111/j.1365-246X.2012.05512.x

    [44]

    Gou T, Zhao D P, Huang Z C, et al. Structural heterogeneity in source zones of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3):e2019GC008812. doi: 10.1029/2019GC008812

    [45]

    Gou T, Xia S H, Huang Z C, et al. Structural heterogeneity of the Alaska-Aleutian Forearc: implications for interplate coupling and seismogenic behaviors[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024621. doi: 10.1029/2022JB024621

    [46]

    Feng L, Liu C M, Ritzwoller M H. Azimuthal anisotropy of the crust and uppermost mantle beneath Alaska[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12):e2020JB020076. doi: 10.1029/2020JB020076

    [47]

    Li Z S, Wiens D A, Shen W S, et al. Along-strike variations of Alaska subduction zone structure and hydration determined from amphibious seismic data[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3):e2023JB027800. doi: 10.1029/2023JB027800

    [48]

    Wang F, Wei S S, Drooff C, et al. Fluids control along-strike variations in the Alaska megathrust slip[J]. Earth and Planetary Science Letters, 2024, 633:118655. doi: 10.1016/j.jpgl.2024.118655

    [49]

    Liu C M, Zhang S N, Sheehan A F, et al. Surface wave isotropic and azimuthally anisotropic dispersion across Alaska and the Alaska-Aleutian subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024885. doi: 10.1029/2022JB024885

    [50]

    Zhao D P, Huang Z C, Umino N, et al. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0)[J]. Geophysical Research Letters, 2011, 38(17):L17308. doi: 10.1029/2011gl048408

    [51]

    Moreno M, Haberland C, Oncken O, et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake[J]. Nature Geoscience, 2014, 7(4):292-296. doi: 10.1038/ngeo2102

    [52]

    Bassett D, Sandwell D T, Fialko Y, et al. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake[J]. Nature, 2016, 531(7592):92-96. doi: 10.1038/nature16945

    [53]

    Steckler M S, Mondal D R, Akhter S H, et al. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges[J]. Nature Geoscience, 2016, 9(8):615-618. doi: 10.1038/ngeo2760

    [54]

    Liu X, Zhao D P. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Science Advances, 2018, 4(6):eaat4396. doi: 10.1126/sciadv.aat4396

    [55]

    Hua Y Y, Zhao D P, Toyokuni G, et al. Tomography of the source zone of the great 2011 Tohoku earthquake[J]. Nature Communications, 2020, 11(1):1163. doi: 10.1038/s41467-020-14745-8

    [56]

    Cordell D, Naif S, Evans R, et al. Forearc seismogenesis in a weakly coupled subduction zone influenced by slab mantle fluids[J]. Nature Geoscience, 2023, 16(9):822-827. doi: 10.1038/s41561-023-01260-w

    [57]

    Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252. doi: 10.1016/0031-9201(80)90117-X

    [58]

    Nishikawa T, Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7(12):904-908. doi: 10.1038/ngeo2279

    [59]

    Hawley W B, Allen R M, Richards M A. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate[J]. Science, 2016, 353(6306):1406-1408. doi: 10.1126/science.aad8104

    [60]

    Zhao D P, Hua Y Y. Anisotropic tomography of the Cascadia subduction zone[J]. Physics of the Earth and Planetary Interiors, 2021, 318:106767. doi: 10.1016/j.pepi.2021.106767

    [61]

    Bodmer M, Toomey D R, Hooft E E E, et al. Buoyant asthenosphere beneath Cascadia influences megathrust segmentation[J]. Geophysical Research Letters, 2018, 45(14):6954-6962. doi: 10.1029/2018GL078700

    [62]

    Bodmer M, Toomey D R, Roering J J, et al. Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc[J]. Earth and Planetary Science Letters, 2020, 531:115965. doi: 10.1016/j.jpgl.2019.115965

    [63]

    Fan J K, Zhao D P. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14(5):349-353. doi: 10.1038/s41561-021-00728-x

    [64]

    Chaytor J D, Keller R A, Duncan R A, et al. Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09016. doi: 10.1029/2007GC001712

  • 加载中

(12)

计量
  • 文章访问数:  35
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-04-19
修回日期:  2024-07-09
录用日期:  2024-07-09
刊出日期:  2025-06-28

目录